Nanotechnologies promise to improve disease diagnosis and treatment, overcoming the limitations of conventional administrations. In particular, extracellular vesicles (EVs) and artificial vesicles (AVs) are strongly emerging tools in nanomedicine (Leggio et al., 2020). EVs are cell-derived membrane structures secreted after the fusion of endosomes with the plasma membrane (exosomes) or shed from the plasma membrane (microvesicles). EVs are released by different brain cells (neurons, oligodendrocytes, astrocytes, and microglia) and constitute a physiological intercellular communication system. Indeed, EVs can deliver different types of molecules (nucleic acids and proteins), which often influence the phenotype of the recipient cells. They play a physiological role in the central nervous system (CNS), such as development, myelination, regeneration, and synaptic activity (Lai et al., 2012). Due to their content, EVs could therefore constitute an important biomarker for neurodegenerative diseases, represent candidates for therapeutic use, enclosing regulatory molecules, or be considered as vectors for brain drug delivery (Croese et al.,2018)

Biofabrication of nanovesicles for brain diseases

Pasquale Picone;Domenico Nuzzo
2023

Abstract

Nanotechnologies promise to improve disease diagnosis and treatment, overcoming the limitations of conventional administrations. In particular, extracellular vesicles (EVs) and artificial vesicles (AVs) are strongly emerging tools in nanomedicine (Leggio et al., 2020). EVs are cell-derived membrane structures secreted after the fusion of endosomes with the plasma membrane (exosomes) or shed from the plasma membrane (microvesicles). EVs are released by different brain cells (neurons, oligodendrocytes, astrocytes, and microglia) and constitute a physiological intercellular communication system. Indeed, EVs can deliver different types of molecules (nucleic acids and proteins), which often influence the phenotype of the recipient cells. They play a physiological role in the central nervous system (CNS), such as development, myelination, regeneration, and synaptic activity (Lai et al., 2012). Due to their content, EVs could therefore constitute an important biomarker for neurodegenerative diseases, represent candidates for therapeutic use, enclosing regulatory molecules, or be considered as vectors for brain drug delivery (Croese et al.,2018)
2023
Istituto per la Ricerca e l'Innovazione Biomedica -IRIB
nanovesicles
Nanotechnologies
brain disease
File in questo prodotto:
File Dimensione Formato  
prod_469104-doc_189835.pdf

accesso aperto

Descrizione: Biofabrication of nanovesicles for brain diseases
Tipologia: Versione Editoriale (PDF)
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/419154
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact