A decade of genetic association studies in multiple organisms suggests that most complex traits are polygenic; that is, they have a genetic architecture determined by numerous loci, each with small effect-size. Thus, determining the degree of polygenicity and its variation across traits, environments and time is crucial to understand the genetic basis of phenotypic variation. We applied multilocus approaches to estimate the degree of polygenicity of fitness-related traits in a long-lived plant (Pinus pinaster Ait., maritime pine) and to analyse this variation across environments and years. We evaluated five categories of fitness-related traits (survival, height, phenology, functional, and biotic-stress response) in a clonal common-garden network planted in contrasted environments (over 20,500 trees). Most of the analysed traits showed evidence of local adaptation based on Q-F comparisons. We further observed a remarkably stable degree of polygenicity, averaging 6% (range of 0%-27%), across traits, environments and years. We detected evidence of negative selection, which could explain, at least partially, the high degree of polygenicity. Because polygenic adaptation can occur rapidly, our results suggest that current predictions on the capacity of natural forest tree populations to adapt to new environments should be revised, especially in the current context of climate change.

Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinaster Ait., Pinaceae)

Vendramin GG;
2022

Abstract

A decade of genetic association studies in multiple organisms suggests that most complex traits are polygenic; that is, they have a genetic architecture determined by numerous loci, each with small effect-size. Thus, determining the degree of polygenicity and its variation across traits, environments and time is crucial to understand the genetic basis of phenotypic variation. We applied multilocus approaches to estimate the degree of polygenicity of fitness-related traits in a long-lived plant (Pinus pinaster Ait., maritime pine) and to analyse this variation across environments and years. We evaluated five categories of fitness-related traits (survival, height, phenology, functional, and biotic-stress response) in a clonal common-garden network planted in contrasted environments (over 20,500 trees). Most of the analysed traits showed evidence of local adaptation based on Q-F comparisons. We further observed a remarkably stable degree of polygenicity, averaging 6% (range of 0%-27%), across traits, environments and years. We detected evidence of negative selection, which could explain, at least partially, the high degree of polygenicity. Because polygenic adaptation can occur rapidly, our results suggest that current predictions on the capacity of natural forest tree populations to adapt to new environments should be revised, especially in the current context of climate change.
2022
Istituto di Bioscienze e Biorisorse - IBBR - Sede Secondaria Sesto Fiorentino (FI)
heritability
local adaptation
maritime pine
negative selection
polygenicity
File in questo prodotto:
File Dimensione Formato  
prod_469619-doc_190269.pdf

solo utenti autorizzati

Descrizione: Polygenic adaptation and negative selection across traits, years and environments in a long-lived plant species (Pinus pinasterAit., Pinaceae)
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/419355
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 18
social impact