This paper deals with the design and fabrication of an unpretentious (single-layer, without any lump element) broadband (97%, 11.3-32.3 GHz) radar cross-section reduction (RCSR) modulated surface (MS). The proposed structure uses sinusoidal modulation gap sizes between square patches within square unit cells to form a phase gradient that plays an effective role in improving the RCSR bandwidth. An MS with dimensions of 250 × 250 mm, consisting of 40 × 40 unit cells with a period of 6 mm printed on a RO4003C (lossy) substrate of 0.06? (? being the wavelength at the lower frequency) thickness, has been prototyped. The MS has square patch (SP) unit cells with seven different gap sizes. A genetic algorithm (GA)-based fine-tuning has been implemented to further increase the performances of the structure. Measurements on it have been conducted considering both mono- and bi-static arrangements and for oblique incidences for both TM and TE polarization tests. A good agreement between simulation and measurement results proves the validity of the design criteria.

Wideband RCS Reduction by Single-Layer Phase Gradient Modulated Surface

Matekovits Ladislau
2022

Abstract

This paper deals with the design and fabrication of an unpretentious (single-layer, without any lump element) broadband (97%, 11.3-32.3 GHz) radar cross-section reduction (RCSR) modulated surface (MS). The proposed structure uses sinusoidal modulation gap sizes between square patches within square unit cells to form a phase gradient that plays an effective role in improving the RCSR bandwidth. An MS with dimensions of 250 × 250 mm, consisting of 40 × 40 unit cells with a period of 6 mm printed on a RO4003C (lossy) substrate of 0.06? (? being the wavelength at the lower frequency) thickness, has been prototyped. The MS has square patch (SP) unit cells with seven different gap sizes. A genetic algorithm (GA)-based fine-tuning has been implemented to further increase the performances of the structure. Measurements on it have been conducted considering both mono- and bi-static arrangements and for oblique incidences for both TM and TE polarization tests. A good agreement between simulation and measurement results proves the validity of the design criteria.
2022
modulated surface
phase gradient
radar cross section reduction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/419420
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact