Motivated by recent ultrafast pump-probe experiments on high-temperature superconductors, we discuss the transient dynamics of a d-wave BCS model after a quantum quench of the interaction parameter. We find that the existence of gap nodes, with the associated nodal quasiparticles, introduces a decay channel which makes the dynamics much faster than in the conventional s-wave model. For every value of the quench parameter, the superconducting gap rapidly converges to a stationary value smaller than the one at equilibrium. Using a sudden approximation for the gap dynamics, we find an analytical expression for the reduction of spectral weight close to the nodes, which is in qualitative agreement with recent experiments.
Transient Dynamics of d-Wave Superconductors after a Sudden Excitation
Capone Massimo
2015
Abstract
Motivated by recent ultrafast pump-probe experiments on high-temperature superconductors, we discuss the transient dynamics of a d-wave BCS model after a quantum quench of the interaction parameter. We find that the existence of gap nodes, with the associated nodal quasiparticles, introduces a decay channel which makes the dynamics much faster than in the conventional s-wave model. For every value of the quench parameter, the superconducting gap rapidly converges to a stationary value smaller than the one at equilibrium. Using a sudden approximation for the gap dynamics, we find an analytical expression for the reduction of spectral weight close to the nodes, which is in qualitative agreement with recent experiments.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


