The understanding of the atmospheric processes in coastal areas requires the availability of quality datasets describing the vertical and horizontal spatial structure of the Atmospheric Boundary Layer (ABL) on either side of the coastline. High-resolution Numerical Weather Prediction (NWP) models can provide this information and the main ingredients for good simulations are: an accurate description of the coastline and a correct subgrid process parametrization permitting coastline discontinuities to be caught. To provide an as comprehensive as possible dataset on Mediterranean coastal area, an intensive experimental campaign was realized at a near-shore Italian site, using optical and acoustic ground-based remote sensing and surface instruments, under different weather characteristic and stability conditions; the campaign is also fully simulated by a NWP model. Integrating information from instruments responding to different atmospheric properties allowed for an explanation of the development of various patterns in the vertical structure of the atmosphere. Wind LiDAR measurements provided information of the internal boundary layer from the value of maximum height reached by the wind profile; a height between 80 and 130 m is often detected as an interface between two different layers. The NWP model was able to simulate the vertical wind profiles and the eight of the ABL.

Study of the vertical structure of the coastal boundary layer integrating surface measurements and ground-based remote sensing

Lo Feudo Teresa
Primo
Conceptualization
;
Calidonna Claudia Roberta
Secondo
Conceptualization
;
Avolio Elenio
Penultimo
Conceptualization
;
2020

Abstract

The understanding of the atmospheric processes in coastal areas requires the availability of quality datasets describing the vertical and horizontal spatial structure of the Atmospheric Boundary Layer (ABL) on either side of the coastline. High-resolution Numerical Weather Prediction (NWP) models can provide this information and the main ingredients for good simulations are: an accurate description of the coastline and a correct subgrid process parametrization permitting coastline discontinuities to be caught. To provide an as comprehensive as possible dataset on Mediterranean coastal area, an intensive experimental campaign was realized at a near-shore Italian site, using optical and acoustic ground-based remote sensing and surface instruments, under different weather characteristic and stability conditions; the campaign is also fully simulated by a NWP model. Integrating information from instruments responding to different atmospheric properties allowed for an explanation of the development of various patterns in the vertical structure of the atmosphere. Wind LiDAR measurements provided information of the internal boundary layer from the value of maximum height reached by the wind profile; a height between 80 and 130 m is often detected as an interface between two different layers. The NWP model was able to simulate the vertical wind profiles and the eight of the ABL.
2020
Istituto di Scienze dell'Atmosfera e del Clima - ISAC - Sede Secondaria Lamezia Terme
remote sensing; WRF model; ABL; IBM method; atmospheric stability
File in questo prodotto:
File Dimensione Formato  
sensors-20-06516-v2.pdf

accesso aperto

Descrizione: Sensors 2020, 20, 6516; doi:10.3390/s20226516
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.73 MB
Formato Adobe PDF
6.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/419657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact