In aqueous conditions, amphiphilic bioactive molecules are able to form self-assembled colloidal structures modifying their biological activity. This behavior is generally neglected in preclinical studies, despite its impact on pharmacological development. In this regard, a significative example is represented by a new class of amphiphilic marine-inspired vaccine adjuvants, collectively named Sulfavants, based on the ?-sulfoquinovosyl-diacylglyceride skeleton. The family includes the lead product Sulfavant A (1) and two epimers, Sulfavant R (2) and Sulfavant S (3), differing only for the stereochemistry at C-2 of glycerol. The three compounds showed a significant difference in immunological potency, presumably correlated with change of the aggregates in water. Here, a new synthesis of diastereopure 3 was achieved, and the study of the immunomodulatory behavior of mixtures of 2/3 proved that the bizarre in vitro response to 1-3 effectively depends on the supramolecular aggregation states, likely affecting the bioavailability of agonists that can effectively interact with the cellular targets. The evidence obtained with the mixture of pure Sulfavant R (2) and Sulfavant S (3) proves, for the first time, that supramolecular organization of a mixture of active epimers in aqueous solution can bias evaluation of their biological and pharmacological potential.
Preparation, Supramolecular Aggregation and Immunological Activity of the Bona Fide Vaccine Adjuvant Sulfavant S
Emiliano Manzo;Laura Fioretto;Carmela Gallo;Marcello Ziaco;Genoveffa Nuzzo;Giuliana D'Ippolito;Assunta Borzacchiello;Antonio Fabozzi;Angelo Fontana
2020
Abstract
In aqueous conditions, amphiphilic bioactive molecules are able to form self-assembled colloidal structures modifying their biological activity. This behavior is generally neglected in preclinical studies, despite its impact on pharmacological development. In this regard, a significative example is represented by a new class of amphiphilic marine-inspired vaccine adjuvants, collectively named Sulfavants, based on the ?-sulfoquinovosyl-diacylglyceride skeleton. The family includes the lead product Sulfavant A (1) and two epimers, Sulfavant R (2) and Sulfavant S (3), differing only for the stereochemistry at C-2 of glycerol. The three compounds showed a significant difference in immunological potency, presumably correlated with change of the aggregates in water. Here, a new synthesis of diastereopure 3 was achieved, and the study of the immunomodulatory behavior of mixtures of 2/3 proved that the bizarre in vitro response to 1-3 effectively depends on the supramolecular aggregation states, likely affecting the bioavailability of agonists that can effectively interact with the cellular targets. The evidence obtained with the mixture of pure Sulfavant R (2) and Sulfavant S (3) proves, for the first time, that supramolecular organization of a mixture of active epimers in aqueous solution can bias evaluation of their biological and pharmacological potential.File | Dimensione | Formato | |
---|---|---|---|
marinedrugs-18-00451 (1).pdf
accesso aperto
Descrizione: Preparation, Supramolecular Aggregation and Immunological Activity of the Bona Fide Vaccine Adjuvant Sulfavant S
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.68 MB
Formato
Adobe PDF
|
2.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.