We develop a lumped parameter model to describe and predict the mass release of (absorption from) an arbitrary shaped body of any dimension in a large environment. Through the one-to-one analogy between diffusion-dominated mass transfer systems and electrical circuits we provide exact solutions in terms of averaged concentrations and mass released. An estimate of the equivalent resistance and of the release time is also given, and shown to be inversely proportional to the diffusivity. The proposed electrical analogue approach allows a time constant to be defined and provides an easy extension to a multi-layer and multi-phase cases in planar and spherical geometries. The simulation results are compared with those obtained from the solution of the corresponding analytical, numerical and experimental solutions, showing a satisfactory accuracy and a good agreement.

Mass diffusion in multi-layer systems: an electrical analogue modelling approach

Pontrelli G
2022

Abstract

We develop a lumped parameter model to describe and predict the mass release of (absorption from) an arbitrary shaped body of any dimension in a large environment. Through the one-to-one analogy between diffusion-dominated mass transfer systems and electrical circuits we provide exact solutions in terms of averaged concentrations and mass released. An estimate of the equivalent resistance and of the release time is also given, and shown to be inversely proportional to the diffusivity. The proposed electrical analogue approach allows a time constant to be defined and provides an easy extension to a multi-layer and multi-phase cases in planar and spherical geometries. The simulation results are compared with those obtained from the solution of the corresponding analytical, numerical and experimental solutions, showing a satisfactory accuracy and a good agreement.
2022
Istituto Applicazioni del Calcolo ''Mauro Picone''
drug release
mathematical modelling
lumped parameter model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/419767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact