Insulin is the master regulator of glucose, lipid, and protein metabolism. Following ingestion of an oral glucose load or mixed meal, the plasma glucose concentration rises, insulin secretion by the beta cells is stimulated and the hyperinsulinemia, working in concert with hyperglycemia, causes: (i) suppression of endogenous (primarily reflects hepatic) glucose production, (ii) stimulation of glucose uptake by muscle, liver, and adipocytes, (iii) inhibition of lipolysis leading to a decline in plasma FFA concentration which contributes to the suppression of hepatic glucose production and augmentation of muscle glucose uptake, and (iv) vasodilation in muscle, which contributes to enhanced muscle glucose disposal. Herein, the integrated physiologic impact of insulin to maintain normal glucose homeostasis is reviewed and the molecular basis of insulin's diverse actions in muscle, liver, adipocytes, and vasculature are discussed.

Insulin: The master regulator of glucose metabolism

Gastaldelli Amalia;
2022

Abstract

Insulin is the master regulator of glucose, lipid, and protein metabolism. Following ingestion of an oral glucose load or mixed meal, the plasma glucose concentration rises, insulin secretion by the beta cells is stimulated and the hyperinsulinemia, working in concert with hyperglycemia, causes: (i) suppression of endogenous (primarily reflects hepatic) glucose production, (ii) stimulation of glucose uptake by muscle, liver, and adipocytes, (iii) inhibition of lipolysis leading to a decline in plasma FFA concentration which contributes to the suppression of hepatic glucose production and augmentation of muscle glucose uptake, and (iv) vasodilation in muscle, which contributes to enhanced muscle glucose disposal. Herein, the integrated physiologic impact of insulin to maintain normal glucose homeostasis is reviewed and the molecular basis of insulin's diverse actions in muscle, liver, adipocytes, and vasculature are discussed.
2022
Istituto di Fisiologia Clinica - IFC
Adipocyte
Diabetes
Insulin liver
Muscle
Vasculature
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/420056
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 100
  • ???jsp.display-item.citation.isi??? ND
social impact