Aqueous solutions of amphiphilic molecules are characterized by the competition between hydrophilic and hydrophobic interactions. These interactions have a different energetic dependence with the temperature. Whereas hydrophilic interactions have been well characterized, a complete theory for the hydrophobic ones is still lacking as well as the comprehension of the effect that the solvent exerts on the solute and vice versa. In this paper from the measured relaxation time, we evaluated the thermodynamic state functions of water-methanol solutions in the frame of the transition state theory. In particular we study the behavior of the Gibbs free energy, enthalpy and entropy of water, methanol and some of their solutions as a function of both temperature and water molar fraction. Our results indicate that the temperature of about 280 K represents a crossover between two regions dominated by hydrophobicity (high T) and hydrophilicity (low T).

The evaluation of the hydrophilic-hydrophobic interactions and their effect in water-methanol solutions: A study in terms of the thermodynamic state functions in the frame of the transition state theory

Corsaro Carmelo;Longo Sveva;
2018

Abstract

Aqueous solutions of amphiphilic molecules are characterized by the competition between hydrophilic and hydrophobic interactions. These interactions have a different energetic dependence with the temperature. Whereas hydrophilic interactions have been well characterized, a complete theory for the hydrophobic ones is still lacking as well as the comprehension of the effect that the solvent exerts on the solute and vice versa. In this paper from the measured relaxation time, we evaluated the thermodynamic state functions of water-methanol solutions in the frame of the transition state theory. In particular we study the behavior of the Gibbs free energy, enthalpy and entropy of water, methanol and some of their solutions as a function of both temperature and water molar fraction. Our results indicate that the temperature of about 280 K represents a crossover between two regions dominated by hydrophobicity (high T) and hydrophilicity (low T).
2018
Aqueous solutions
Biological interactions
Hydrogen bonding
Thermodynamic state functions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/420211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact