Synthetic Aperture Radar (SAR) represents nowadays a well-established tool for day and night and all-weather microwave Earth Oobservation (EO) [1]. In last decades, a number of procedures EO techniques based on SAR data have been indeed devised developed for investigating several natural and anthropic phenomena the monitoring of affecting our planet. Among these, SAR Interferometry (InSAR) and Differential SAR Interferometry (DInSAR) undoubtedly represent a powerful techniques to characterize the deformation processes associated to several natural phenomena, such as eEarthquakes, landslides, subsidences andor volcanic unrest events [2] - [4]. In particular, such techniques can benefit of the operational flexibility offered by airborne SAR systems, which allow us to frequently monitor fast-evolving phenomena, timely reach the region of interest in case of emergency, and observe the same scene under arbitrary flight tracks. In this work, we present the results relevant to multiple radar surveys carried out over the Stromboli Island, in Italy, through the Italian Airborne X-band Interferometric SAR (AXIS) system. The latter is based on the Frequency Modulated Continuous Wave (FMCW) technology, and is equipped with a three-antenna single-pass interferometric layout [5]. The considered dataset has been collected during three different acquisition campaigns, carried out from July 2019 to June 2021, and consists of radar data acquired along four flight directions (SW-NE, NW-SE, NE-SW, SE-NW), as to describe flight circuits around the island and to illuminate the Stromboli volcano under different points of view.

Stromboli Volcano observations through the Airborne X-band Interferometric SAR (AXIS) system

Paolo Berardino;Antonio Natale;Carmen Esposito;Riccardo Lanari;Stefano Perna
2022

Abstract

Synthetic Aperture Radar (SAR) represents nowadays a well-established tool for day and night and all-weather microwave Earth Oobservation (EO) [1]. In last decades, a number of procedures EO techniques based on SAR data have been indeed devised developed for investigating several natural and anthropic phenomena the monitoring of affecting our planet. Among these, SAR Interferometry (InSAR) and Differential SAR Interferometry (DInSAR) undoubtedly represent a powerful techniques to characterize the deformation processes associated to several natural phenomena, such as eEarthquakes, landslides, subsidences andor volcanic unrest events [2] - [4]. In particular, such techniques can benefit of the operational flexibility offered by airborne SAR systems, which allow us to frequently monitor fast-evolving phenomena, timely reach the region of interest in case of emergency, and observe the same scene under arbitrary flight tracks. In this work, we present the results relevant to multiple radar surveys carried out over the Stromboli Island, in Italy, through the Italian Airborne X-band Interferometric SAR (AXIS) system. The latter is based on the Frequency Modulated Continuous Wave (FMCW) technology, and is equipped with a three-antenna single-pass interferometric layout [5]. The considered dataset has been collected during three different acquisition campaigns, carried out from July 2019 to June 2021, and consists of radar data acquired along four flight directions (SW-NE, NW-SE, NE-SW, SE-NW), as to describe flight circuits around the island and to illuminate the Stromboli volcano under different points of view.
2022
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
SAR
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/420290
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact