We have developed a kinetic MonteCarlo numerical scheme, specifically suited to simulate structural transitions in crystalline materials, and implemented it for the case of epitaxial graphene on SiC. In this process, surface Si atoms selectively sublimate, while the residual C atoms rearrange from a position occupied in the SiC hexagonal lattice to the graphene honeycomb structure, modifying their hybridization (from sp(3) to sp(2)) and bond partners (from Si-C to C-C). The model is based on the assumption that the Monte Carlo particles follow the evolution of their reference crystal until they experience a thermally activated reversible transition to another crystal structure. We demonstrate that, in a formulation based on three parallel lattices, the method is able to recover the complex evolution steps of epitaxial graphene on SiC. Moreover, the simulation results are in noteworthy agreement with the overall experimental scenario, both when varying the structural properties of the material (e.g., the initial surface configuration or polarity) as well as the process conditions (e.g., the temperature and pressure).

Simulating structural transitions with kinetic Monte Carlo: The case of epitaxial graphene on SiC

Deretzis I;La Magna A
2016

Abstract

We have developed a kinetic MonteCarlo numerical scheme, specifically suited to simulate structural transitions in crystalline materials, and implemented it for the case of epitaxial graphene on SiC. In this process, surface Si atoms selectively sublimate, while the residual C atoms rearrange from a position occupied in the SiC hexagonal lattice to the graphene honeycomb structure, modifying their hybridization (from sp(3) to sp(2)) and bond partners (from Si-C to C-C). The model is based on the assumption that the Monte Carlo particles follow the evolution of their reference crystal until they experience a thermally activated reversible transition to another crystal structure. We demonstrate that, in a formulation based on three parallel lattices, the method is able to recover the complex evolution steps of epitaxial graphene on SiC. Moreover, the simulation results are in noteworthy agreement with the overall experimental scenario, both when varying the structural properties of the material (e.g., the initial surface configuration or polarity) as well as the process conditions (e.g., the temperature and pressure).
2016
Istituto per la Microelettronica e Microsistemi - IMM
kinetic Monte Carlo
structural transitions
graphene
SiC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/420587
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 8
social impact