We discuss the strategies for the calculation of quantum transport in disordered graphene systems from the quasi-one-dimensional to the two-dimensional limit. To this end, we employ real- and momentum-space versions of the non-equilibrium Green's function formalism along with acceleration algorithms that can overcome computational limitations when dealing with two-terminal devices of dimensions that range from the nano- to the micro-scale. We apply this formalism for the case of rectangular graphene samples with a finite concentration of single-vacancy defects and discuss the resulting localization regimes.

Electron Quantum Transport in Disordered Graphene

Deretzis I;La Magna A
2016

Abstract

We discuss the strategies for the calculation of quantum transport in disordered graphene systems from the quasi-one-dimensional to the two-dimensional limit. To this end, we employ real- and momentum-space versions of the non-equilibrium Green's function formalism along with acceleration algorithms that can overcome computational limitations when dealing with two-terminal devices of dimensions that range from the nano- to the micro-scale. We apply this formalism for the case of rectangular graphene samples with a finite concentration of single-vacancy defects and discuss the resulting localization regimes.
2016
Istituto per la Microelettronica e Microsistemi - IMM
978-3-319-30398-7
quantum transport
graphene
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/420589
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact