The propagation of surface acoustic waves (SAWs) along a ZnO/SiO2/Si piezoelectric structure is experimentally and theoretically studied. Six surface acoustic modes were experimentally detected in the 134 to 570 MHz frequency range, for acoustic wavelength lambda = 30 mu m, and for SiO2 and ZnO layers with a thickness of 1 and 2.4 mu m. The numerical and three-dimensional (3D) finite element method analysis revealed that the multilayered substrate supports the propagation of Rayleigh and Sezawa modes (R-m and S-m), their third and fifth harmonics at lambda/3 and lambda/5. The velocity of all the modes was found in good agreement with the theoretically predicted values. Eigenfrequency, frequency domain, and time domain studies were performed to calculate the velocity, the electroacoustic coupling coefficient, the shape of the modes, the propagation loss, and the scattering parameter S-21 of the SAW delay lines based on the propagation of these modes. The sensitivity to five different gases (dichloromethane, trichloromethane, carbontetrachloride, tetrachloroethylene, and trichloroethylene) was calculated under the hypothesis that the ZnO surface is covered by a polyisobutylene (PIB) layer 0.8 mu m thick. The results show that the modes resonating at different frequencies exhibit different sensitivities toward the same gas. The multi-frequency ZnO/SiO2/Si single device structure is a promising solution for the development of a multiparameters sensing platform; multiple excitation frequencies with different sensing properties can allow the parallel analysis of the same gas with improved accuracy.

Experimental and Theoretical Study of Multifrequency Surface Acoustic Wave Devices in a Single Si/SiO2/ZnO Piezoelectric Structure

Caliendo Cinzia;
2020

Abstract

The propagation of surface acoustic waves (SAWs) along a ZnO/SiO2/Si piezoelectric structure is experimentally and theoretically studied. Six surface acoustic modes were experimentally detected in the 134 to 570 MHz frequency range, for acoustic wavelength lambda = 30 mu m, and for SiO2 and ZnO layers with a thickness of 1 and 2.4 mu m. The numerical and three-dimensional (3D) finite element method analysis revealed that the multilayered substrate supports the propagation of Rayleigh and Sezawa modes (R-m and S-m), their third and fifth harmonics at lambda/3 and lambda/5. The velocity of all the modes was found in good agreement with the theoretically predicted values. Eigenfrequency, frequency domain, and time domain studies were performed to calculate the velocity, the electroacoustic coupling coefficient, the shape of the modes, the propagation loss, and the scattering parameter S-21 of the SAW delay lines based on the propagation of these modes. The sensitivity to five different gases (dichloromethane, trichloromethane, carbontetrachloride, tetrachloroethylene, and trichloroethylene) was calculated under the hypothesis that the ZnO surface is covered by a polyisobutylene (PIB) layer 0.8 mu m thick. The results show that the modes resonating at different frequencies exhibit different sensitivities toward the same gas. The multi-frequency ZnO/SiO2/Si single device structure is a promising solution for the development of a multiparameters sensing platform; multiple excitation frequencies with different sensing properties can allow the parallel analysis of the same gas with improved accuracy.
2020
Istituto di fotonica e nanotecnologie - IFN
ZnO
Rayleigh wave
Sezawa wave
single device structure
multifrequency device
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/420906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact