Mammalian sperm RNA is increasingly recognized as an additional source of paternal hereditary information beyond DNA. Environmental inputs, including an unhealthy diet, mental stresses and toxin exposure, can reshape the sperm RNA signature and induce offspring phenotypes that relate to paternal environmental stressors. Our understanding of the categories of sperm RNAs (such as tRNA-derived small RNAs, microRNAs, ribosomal RNA-derived small RNAs and long non-coding RNAs) and associated RNA modifications is expanding and has begun to reveal the functional diversity and information capacity of these molecules. However, the coding mechanism endowed by sperm RNA structures and by RNA interactions with DNA and other epigenetic factors remains unknown. How sperm RNA-encoded information is decoded in early embryos to control offspring phenotypes also remains unclear. Complete deciphering of the 'sperm RNA code' with regard to metabolic control could move the field towards translational applications and precision medicine, and this may lead to prevention of intergenerational transmission of obesity and type 2 diabetes mellitus susceptibility.

Sperm RNA code programmes the metabolic health of offspring

Tuorto Francesca;
2019

Abstract

Mammalian sperm RNA is increasingly recognized as an additional source of paternal hereditary information beyond DNA. Environmental inputs, including an unhealthy diet, mental stresses and toxin exposure, can reshape the sperm RNA signature and induce offspring phenotypes that relate to paternal environmental stressors. Our understanding of the categories of sperm RNAs (such as tRNA-derived small RNAs, microRNAs, ribosomal RNA-derived small RNAs and long non-coding RNAs) and associated RNA modifications is expanding and has begun to reveal the functional diversity and information capacity of these molecules. However, the coding mechanism endowed by sperm RNA structures and by RNA interactions with DNA and other epigenetic factors remains unknown. How sperm RNA-encoded information is decoded in early embryos to control offspring phenotypes also remains unclear. Complete deciphering of the 'sperm RNA code' with regard to metabolic control could move the field towards translational applications and precision medicine, and this may lead to prevention of intergenerational transmission of obesity and type 2 diabetes mellitus susceptibility.
2019
Istituto di genetica e biofisica "Adriano Buzzati Traverso"- IGB - Sede Napoli
Sperm RNA code
tRNA
RNA modifications
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/420977
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact