We investigated the complex interaction between a nickel layer and a 4H-SiC substrate under UV-laser irradiation since the early stages of the atomic inter-diffusion. An exhaustive description is still lacking in the literature. A multimethod approach based on Transmission Electron Microscopy, Energy Dispersive Spectroscopy and Diffraction (electron and X-ray) techniques has been implemented for a cross-correlated description of the final state of the contact after laser irradiation. They detailed the stoichiometry and the lattice structure of each phase formed as well as the Ni/Si alloy profile along the contact for laser fluences in the range 2.4-3.8 J/cm(2). To make a bridge between process conditions and post-process characterizations, time dependent ultra-fast phenomena (laser pulse approximate to 160 ns), such as intermixing driven melting and Ni-silicides reactions, have been simulated by a modified phase fields approach in the proper many-compounds formulation.

Inter-diffusion, melting and reaction interplay in Ni/4H-SiC under excimer laser annealing

Sanzaro Salvatore;Bongiorno Corrado;Alberti Alessandra
Penultimo
Conceptualization
;
La Magna Antonino
Ultimo
Conceptualization
2021

Abstract

We investigated the complex interaction between a nickel layer and a 4H-SiC substrate under UV-laser irradiation since the early stages of the atomic inter-diffusion. An exhaustive description is still lacking in the literature. A multimethod approach based on Transmission Electron Microscopy, Energy Dispersive Spectroscopy and Diffraction (electron and X-ray) techniques has been implemented for a cross-correlated description of the final state of the contact after laser irradiation. They detailed the stoichiometry and the lattice structure of each phase formed as well as the Ni/Si alloy profile along the contact for laser fluences in the range 2.4-3.8 J/cm(2). To make a bridge between process conditions and post-process characterizations, time dependent ultra-fast phenomena (laser pulse approximate to 160 ns), such as intermixing driven melting and Ni-silicides reactions, have been simulated by a modified phase fields approach in the proper many-compounds formulation.
2021
Istituto per la Microelettronica e Microsistemi - IMM
XRD
TEM
Compositional profile
Phases
Silicide
Silicidation
File in questo prodotto:
File Dimensione Formato  
2021_Applied Surface Science 539 (2021) 148218.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 10.93 MB
Formato Adobe PDF
10.93 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/421018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact