In this paper we propose multispectrum rotational states distribution thermometry as an optical method for primary thermometry. It relies on a global fitting of multiple absorption lines of the same band at different pressures. The approach allows leveraging both the temperature-dependent Doppler width and the temperature-dependent distribution of line intensities across the ro-vibrational band. We provide a proof-of-principle demonstration of the approach on the 3 nu(1)+nu(3)band of CO2, for which several accurate line-strength models of both theoretical and experimental origin are available for the global fitting. Our experimental conditions do not allow to test the methodology beyond a combined uncertainty of 530 ppm, but the comparative analysis between different line-strength models shows promise to reduce the error budget to few tens of ppm. As compared to Doppler-broadening thermometry, the approach is advantageous to mitigate systematic errors induced by a wrong modelling of absorption line-shapes and to reduce, for a given experimental dataset, the statistical uncertainty by a factor of 2. When applied in a reverse way, i.e. using a gas of known temperature, the approach becomes a stringent testbed for the accuracy of the adopted line-strength model.

Multispectrum rotational states distribution thermometry: application to the 3 nu(1)+nu(3)band of carbon dioxide

Gotti R;Gatti D;Laporta P;Marangoni M
2020

Abstract

In this paper we propose multispectrum rotational states distribution thermometry as an optical method for primary thermometry. It relies on a global fitting of multiple absorption lines of the same band at different pressures. The approach allows leveraging both the temperature-dependent Doppler width and the temperature-dependent distribution of line intensities across the ro-vibrational band. We provide a proof-of-principle demonstration of the approach on the 3 nu(1)+nu(3)band of CO2, for which several accurate line-strength models of both theoretical and experimental origin are available for the global fitting. Our experimental conditions do not allow to test the methodology beyond a combined uncertainty of 530 ppm, but the comparative analysis between different line-strength models shows promise to reduce the error budget to few tens of ppm. As compared to Doppler-broadening thermometry, the approach is advantageous to mitigate systematic errors induced by a wrong modelling of absorption line-shapes and to reduce, for a given experimental dataset, the statistical uncertainty by a factor of 2. When applied in a reverse way, i.e. using a gas of known temperature, the approach becomes a stringent testbed for the accuracy of the adopted line-strength model.
2020
Istituto di fotonica e nanotecnologie - IFN
primary thermometry
molecular spectroscopy
frequency combs
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/421051
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact