We describe the ground state of a gas of bosonic atoms with two coherently coupled internal levels in a deep optical lattice in a one-dimensional geometry. In the single-band approximation this system is described by a Bose-Hubbard Hamiltonian. The system has a superfluid and a Mott insulating phase that can be either paramagnetic or ferromagnetic. We characterize the quantum phase transitions at unit filling by means of a density-matrix renormalization-group technique and compare the results with a mean-field approach and an effective spin Hamiltonian. The presence of the ferromagnetic Ising-like transition modifies the Mott lobes. In the Mott insulating region the system maps to the ferromagnetic spin-1/2 XXZ model in a transverse field and the numerical results compare very well with the analytical results obtained from the spin model. In the superfluid regime quantum fluctuations strongly modify the phase transition with respect to the well-established mean-field three-dimensional classical bifurcation.

Magnetic phase transition in coherently coupled Bose gases in optical lattices

Recati A
2016

Abstract

We describe the ground state of a gas of bosonic atoms with two coherently coupled internal levels in a deep optical lattice in a one-dimensional geometry. In the single-band approximation this system is described by a Bose-Hubbard Hamiltonian. The system has a superfluid and a Mott insulating phase that can be either paramagnetic or ferromagnetic. We characterize the quantum phase transitions at unit filling by means of a density-matrix renormalization-group technique and compare the results with a mean-field approach and an effective spin Hamiltonian. The presence of the ferromagnetic Ising-like transition modifies the Mott lobes. In the Mott insulating region the system maps to the ferromagnetic spin-1/2 XXZ model in a transverse field and the numerical results compare very well with the analytical results obtained from the spin model. In the superfluid regime quantum fluctuations strongly modify the phase transition with respect to the well-established mean-field three-dimensional classical bifurcation.
2016
Istituto Nazionale di Ottica - INO
Coherently Coupled Bose gases
Bose-Hubbard Models
Quantum Magnetism
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/421062
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact