A family of Lorentz invariant scalar functions of the magnetic field is defined in an ideal relativistic plasma. These invariants are advected by the plasma fluid motion and play the role of the potential magnetic field introduced by Hide in (Ann. Geophys., vol. 1, 1983, 59) along the lines of Ertel's theorem. From these invariants we recover the Cauchy conditions for the magnetic field components in the mapping from Eulerian to Lagrangian variables. In addition, the adopted procedure allows us to formulate, in a Lorentz invariant form, the Alfven theorem for the conservation of the magnetic flux through a surface comoving with the plasma.
Lorentz invariant 'potential magnetic field' and magnetic flux conservation in an ideal relativistic plasma
Pegoraro F
2018
Abstract
A family of Lorentz invariant scalar functions of the magnetic field is defined in an ideal relativistic plasma. These invariants are advected by the plasma fluid motion and play the role of the potential magnetic field introduced by Hide in (Ann. Geophys., vol. 1, 1983, 59) along the lines of Ertel's theorem. From these invariants we recover the Cauchy conditions for the magnetic field components in the mapping from Eulerian to Lagrangian variables. In addition, the adopted procedure allows us to formulate, in a Lorentz invariant form, the Alfven theorem for the conservation of the magnetic flux through a surface comoving with the plasma.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


