The use of electromagnetically induced absorption (EIA) in sensing and metrology has been thus far hindered by saturation effects, which severely degrade its linewidth. Here we propose, and experimentally demonstrate, that time-dependent Ramsey spectroscopy in potassium vapour overcomes the detrimental effect of saturation. We observe sub-kHz Ramsey fringes, with full control of the EIA resonance characteristics. Combined with the efficient optical pumping associated to the K D-1 line, the present work demonstrates an EIA scheme suitable for sensing and metrological applications.
Time-domain Ramsey-narrowed sub-kHz electromagnetically induced absorption in atomic potassium
Marmugi Luca;Gozzini Silvia;Lucchesini Alessandro;Fioretti Andrea
2019
Abstract
The use of electromagnetically induced absorption (EIA) in sensing and metrology has been thus far hindered by saturation effects, which severely degrade its linewidth. Here we propose, and experimentally demonstrate, that time-dependent Ramsey spectroscopy in potassium vapour overcomes the detrimental effect of saturation. We observe sub-kHz Ramsey fringes, with full control of the EIA resonance characteristics. Combined with the efficient optical pumping associated to the K D-1 line, the present work demonstrates an EIA scheme suitable for sensing and metrological applications.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_448397-doc_172056.pdf
accesso aperto
Descrizione: Time-domain Ramsey-narrowed sub-kHz electromagnetically induced absorption in atomic potassium
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


