We have discovered a strong increase in the intensity of the chemiluminescence of a luminol flow and a dramatic modification of its spectral shape in the presence of metallic nanoparticles. We observed that pumping gold and silver nanoparticles into a microfluidic device fabricated in polydimethylsiloxane prolongs the glow time of luminol. We have demonstrated that the intensity of chemiluminescence in the presence of nanospheres depends on the position along the microfluidic serpentine channel. We show that the enhancement factors can be controlled by the nanoparticle size and material. Spectrally, the emission peak of luminol overlaps with the absorption band of the nanospheres, which maximizes the effect of confined plasmons on the optical density of states in the vicinity of the luminol emission peak. These observations, interpreted in terms of the Purcell effect mediated by nano-plasmons, form an essential step toward the development of microfluidic chips with gain media. Practical imple-mentation of the discovered effect will include improving the detection limits of chemiluminescence for forensic science, research in biology and chemistry, and a number of commercial applications.

Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles

2016

Abstract

We have discovered a strong increase in the intensity of the chemiluminescence of a luminol flow and a dramatic modification of its spectral shape in the presence of metallic nanoparticles. We observed that pumping gold and silver nanoparticles into a microfluidic device fabricated in polydimethylsiloxane prolongs the glow time of luminol. We have demonstrated that the intensity of chemiluminescence in the presence of nanospheres depends on the position along the microfluidic serpentine channel. We show that the enhancement factors can be controlled by the nanoparticle size and material. Spectrally, the emission peak of luminol overlaps with the absorption band of the nanospheres, which maximizes the effect of confined plasmons on the optical density of states in the vicinity of the luminol emission peak. These observations, interpreted in terms of the Purcell effect mediated by nano-plasmons, form an essential step toward the development of microfluidic chips with gain media. Practical imple-mentation of the discovered effect will include improving the detection limits of chemiluminescence for forensic science, research in biology and chemistry, and a number of commercial applications.
2016
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Chemiluminescence
Microfluidics
Nanoparticles
Plasmonics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/421209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 85
  • ???jsp.display-item.citation.isi??? ND
social impact