Osteogenesis is a complex physiologic process that occurs during development as well as during damaged bone regeneration. This process requires several growth factors that act on stem cell populations, including Bone Marrow Stem Cells (BMSC). The present study fits into the research field for safe improvement of cell osteogenesis induction. In this context there is a great interest on an autologous and biocompatible blood derived product, named Concentrated Growth Factor (CGF). In particular, the ability of CGF to induce osteogenic differentiation of human BMSC (hBMSC) in vitro was here investigated. The osteogenic differentiation was evaluated measuring typical osteogenic markers such as alkaline phosphatase enzyme activity, matrix mineralization of hBMSC, and expression of some osteogenic-related genes. The results show that CGF alone is able to induce osteogenic differentiation of hBMSC. This finding opens up further, interesting perspectives in the biotechnological use of CGF in the tissue regeneration field.

Concentrated Growth Factors (CGF) Induce Osteogenic Differentiation in Human Bone Marrow Stem Cells

Carluccio Maria Annunziata;Calabriso Nadia;
2020

Abstract

Osteogenesis is a complex physiologic process that occurs during development as well as during damaged bone regeneration. This process requires several growth factors that act on stem cell populations, including Bone Marrow Stem Cells (BMSC). The present study fits into the research field for safe improvement of cell osteogenesis induction. In this context there is a great interest on an autologous and biocompatible blood derived product, named Concentrated Growth Factor (CGF). In particular, the ability of CGF to induce osteogenic differentiation of human BMSC (hBMSC) in vitro was here investigated. The osteogenic differentiation was evaluated measuring typical osteogenic markers such as alkaline phosphatase enzyme activity, matrix mineralization of hBMSC, and expression of some osteogenic-related genes. The results show that CGF alone is able to induce osteogenic differentiation of hBMSC. This finding opens up further, interesting perspectives in the biotechnological use of CGF in the tissue regeneration field.
2020
Istituto di Fisiologia Clinica - IFC - Sede Secondaria di Lecce
Bone tissue engineering, Concentrated Growth Factors (CGF), HBMSC, Osteogenic differentiation
File in questo prodotto:
File Dimensione Formato  
Rochira.pdf

accesso aperto

Descrizione: Concentrated Growth Factors (CGF) Induce Osteogenic Differentiation in Human Bone Marrow Stem Cells
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.84 MB
Formato Adobe PDF
2.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/421249
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 45
social impact