Identification of molecules able to promote neuroprotective mechanisms can represent a promising therapeutic approach to neurodegenerative disorders including Huntington's disease. Curcumin is an antioxidant and neuroprotective agent, even though its efficacy is limited by its poor absorption, rapid metabolism, systemic elimination, and limited blood-brain barrier (BBB) permeability. Herein, we report on novel biodegradable curcumin-containing nanoparticles to favor the compound delivery and potentially enhance its brain bioavailability. The prepared hyaluronan-based materials able to self-assemble in stable spherical nanoparticles, consist of natural fatty acids chemically conjugated to the natural polysaccharide. The aim of this study is to provide a possible effective delivery system for curcumin with the expectation that, after having released the drug at the specific site, the biopolymer can degrade to nontoxic fragments before renal excretion, since all the starting materials are provided by natural resource. Our findings demonstrate that curcumin-encapsulated nanoparticles enter the cells and reduce their susceptibility to apoptosis in an in vitro model of Huntington's disease.

Curcumin-Loaded Nanoparticles Based on Amphiphilic Hyaluronan-Conjugate Explored as Targeting Delivery System for Neurodegenerative Disorders

Verdoliva Valentina;Saviano Michele;De Luca Stefania
2020

Abstract

Identification of molecules able to promote neuroprotective mechanisms can represent a promising therapeutic approach to neurodegenerative disorders including Huntington's disease. Curcumin is an antioxidant and neuroprotective agent, even though its efficacy is limited by its poor absorption, rapid metabolism, systemic elimination, and limited blood-brain barrier (BBB) permeability. Herein, we report on novel biodegradable curcumin-containing nanoparticles to favor the compound delivery and potentially enhance its brain bioavailability. The prepared hyaluronan-based materials able to self-assemble in stable spherical nanoparticles, consist of natural fatty acids chemically conjugated to the natural polysaccharide. The aim of this study is to provide a possible effective delivery system for curcumin with the expectation that, after having released the drug at the specific site, the biopolymer can degrade to nontoxic fragments before renal excretion, since all the starting materials are provided by natural resource. Our findings demonstrate that curcumin-encapsulated nanoparticles enter the cells and reduce their susceptibility to apoptosis in an in vitro model of Huntington's disease.
2020
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
Istituto di Cristallografia - IC
curcumin delivery
HA-based biomaterial
biodegradable nanoparticles
neuroprotection
Huntington’s disease
File in questo prodotto:
File Dimensione Formato  
ijms-21-08846.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.49 MB
Formato Adobe PDF
2.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/421509
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 15
social impact