5G networks are going to support a variety of vertical services, with a diverse set of key performance indicators (KPIs), by using enabling technologies such as software-defined networking and network function virtualization. It is the responsibility of the network operator to efficiently allocate the available resources to the service requests in such a way to honor KPI requirements, while accounting for the limited quantity of available resources and their cost. A critical challenge is that requests may be highly varying over time, requiring a solution that accounts for their dynamic generation and termination. With this motivation, we seek to make joint decisions for request admission, resource activation, VNF placement, resource allocation, and traffic routing. We do so by considering real-world aspects such as the setup times of virtual machines, with the goal of maximizing the mobile network operator profit. To this end, first, we formulate a one-shot optimization problem which can attain the optimum solution for small size problems given the complete knowledge of arrival and departure times of requests over the entire system lifespan. We then propose an efficient and practical heuristic solution that only requires this knowledge for the next time period and works for realistically-sized scenarios. Finally, we evaluate the performance of these solutions using real-world services and large-scale network topologies. Results demonstrate that our heuristic solution performs better than a state-of-the-art online approach and close to the optimum.

Dynamic VNF Placement, Resource Allocation and Traffic Routing in 5G

Carla Fabiana Chiasserini;Francesco Malandrino;
2021

Abstract

5G networks are going to support a variety of vertical services, with a diverse set of key performance indicators (KPIs), by using enabling technologies such as software-defined networking and network function virtualization. It is the responsibility of the network operator to efficiently allocate the available resources to the service requests in such a way to honor KPI requirements, while accounting for the limited quantity of available resources and their cost. A critical challenge is that requests may be highly varying over time, requiring a solution that accounts for their dynamic generation and termination. With this motivation, we seek to make joint decisions for request admission, resource activation, VNF placement, resource allocation, and traffic routing. We do so by considering real-world aspects such as the setup times of virtual machines, with the goal of maximizing the mobile network operator profit. To this end, first, we formulate a one-shot optimization problem which can attain the optimum solution for small size problems given the complete knowledge of arrival and departure times of requests over the entire system lifespan. We then propose an efficient and practical heuristic solution that only requires this knowledge for the next time period and works for realistically-sized scenarios. Finally, we evaluate the performance of these solutions using real-world services and large-scale network topologies. Results demonstrate that our heuristic solution performs better than a state-of-the-art online approach and close to the optimum.
2021
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
5g; orchestration
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/421734
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact