We provide an overview of the methods that can be used for prediction under uncertainty and data fitting of dynamical systems, and of the fundamental challenges that arise in this context. The focus is on SIR-like models, that are being commonly used when attempting to predict the trend of the COVID-19 pandemic. In particular, we raise a warning flag about identifiability of the parameters of SIR-like models; often, it might be hard to infer the correct values of the parameters from data, even for very simple models, making it non-trivial to use these models for meaningful predictions. Most of the points that we touch upon are actually generally valid for inverse problems in more general setups.

A note on tools for prediction under uncertainty and identifiability of SIR-like dynamical systems for epidemiology

C Piazzola;L Tamellini;
2021

Abstract

We provide an overview of the methods that can be used for prediction under uncertainty and data fitting of dynamical systems, and of the fundamental challenges that arise in this context. The focus is on SIR-like models, that are being commonly used when attempting to predict the trend of the COVID-19 pandemic. In particular, we raise a warning flag about identifiability of the parameters of SIR-like models; often, it might be hard to infer the correct values of the parameters from data, even for very simple models, making it non-trivial to use these models for meaningful predictions. Most of the points that we touch upon are actually generally valid for inverse problems in more general setups.
2021
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Bayesian inversion
Dynamical systems
Fisher approximation
Mathematical epidemiology
Model identifiability
Uncertainty Quantification
File in questo prodotto:
File Dimensione Formato  
prod_441603-doc_158890.pdf

Open Access dal 18/11/2021

Descrizione: A note on tools for prediction under uncertainty and identifiability of SIR-like dynamical systems for epidemiology
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 3.76 MB
Formato Adobe PDF
3.76 MB Adobe PDF Visualizza/Apri
1-s2.0-S0025556420301590-main.pdf

solo utenti autorizzati

Descrizione: A note on tools for prediction under uncertainty and identifiability of SIR-like dynamical systems for epidemiology
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.01 MB
Formato Adobe PDF
3.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/421754
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact