The many fundamental roto-vibrational resonances of chemical compounds result in strong absorption lines in the mid-infrared region (? ~ 2-20 ?m). For this reason, mid-infrared spectroscopy plays a key role in label-free sensing, in particular, for chemical recognition, but often lacks the required sensitivity to probe small numbers of molecules. In this work, we propose a vibrational sensing scheme based on Bloch surface waves (BSWs) on 1D photonic crystals to increase the sensitivity of mid-infrared sensors. We report on the design and deposition of CaF2/ZnS 1D photonic crystals. Moreover, we theoretically and experimentally demonstrate the possibility to sustain narrow ?-polarized BSW modes together with broader ?-polarized modes in the range of 3-8 ?m by means of a customized Fourier transform infrared spectroscopy setup. The multilayer stacks are deposited directly on CaF2 prisms, reducing the number of unnecessary interfaces when exciting in the Kretschmann-Raether configuration. Finally, we compare the performance of mid-IR sensors based on surface plasmon polaritons with the BSW-based sensor. The figures of merit found for BSWs in terms of confinement of the electromagnetic field and propagation length puts them as forefrontrunners for labelfree and polarization-dependent sensing devices.

Spectral Characterization of Mid-Infrared Bloch Surface Waves Excited on a Truncated 1D Photonic Crystal

Pea;Marialilia;Mattioli;Francesco;Cibella;Sara;Notargiacomo;Andrea;
2020

Abstract

The many fundamental roto-vibrational resonances of chemical compounds result in strong absorption lines in the mid-infrared region (? ~ 2-20 ?m). For this reason, mid-infrared spectroscopy plays a key role in label-free sensing, in particular, for chemical recognition, but often lacks the required sensitivity to probe small numbers of molecules. In this work, we propose a vibrational sensing scheme based on Bloch surface waves (BSWs) on 1D photonic crystals to increase the sensitivity of mid-infrared sensors. We report on the design and deposition of CaF2/ZnS 1D photonic crystals. Moreover, we theoretically and experimentally demonstrate the possibility to sustain narrow ?-polarized BSW modes together with broader ?-polarized modes in the range of 3-8 ?m by means of a customized Fourier transform infrared spectroscopy setup. The multilayer stacks are deposited directly on CaF2 prisms, reducing the number of unnecessary interfaces when exciting in the Kretschmann-Raether configuration. Finally, we compare the performance of mid-IR sensors based on surface plasmon polaritons with the BSW-based sensor. The figures of merit found for BSWs in terms of confinement of the electromagnetic field and propagation length puts them as forefrontrunners for labelfree and polarization-dependent sensing devices.
2020
Istituto di fotonica e nanotecnologie - IFN
mid-Infrared
Bloch surface waves
spectroscopy
sensors
photonic crystals
FTIR
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/421762
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact