There is a dire need to forecast the ecological impacts of global climate change at scales relevant to policy and management. We used three interconnected models (climatic, biophysical and energetics) to estimate changes in growth, reproduction and mortality risk by 2050, for three commercially and ecologically important bivalves at 51 sites in the Mediterranean Sea. These results predict highly variable responses (both positive and negative) in the time to reproductive maturity and in the risk of lethality among species and sites that do not conform to simple latitudinal gradients, and which would be undetectable by methods focused only on lethal limits and/or range boundaries.

A mechanistic approach reveals non linear effects of climate warming on mussels throughout the Mediterranean sea

Montalto V;Rinaldi A;
2016

Abstract

There is a dire need to forecast the ecological impacts of global climate change at scales relevant to policy and management. We used three interconnected models (climatic, biophysical and energetics) to estimate changes in growth, reproduction and mortality risk by 2050, for three commercially and ecologically important bivalves at 51 sites in the Mediterranean Sea. These results predict highly variable responses (both positive and negative) in the time to reproductive maturity and in the risk of lethality among species and sites that do not conform to simple latitudinal gradients, and which would be undetectable by methods focused only on lethal limits and/or range boundaries.
2016
Mussel
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/421766
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? ND
social impact