Thin films of anatase titanium dioxide are deposited on fluorine-doped tin oxide (FTO) glass substrates utilizing the electric field-assisted aerosol (EA)CVD reaction of titanium isopropoxide in toluene at 450°C. The as-deposited films are characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (RS), and UV-vis spectroscopy. The photoactivity and antibacterial activity of the films are also assessed. The characterization analysis reveals that the use of an electric field affects the film microstructure, its preferential orientation, and the functional properties. XRD of the anatase films reveals that the application of electric fields causes a change in the preferential orientation of the films from (101) to (004) or (211) planes, depending on the strength of the applied field during the deposition.
Titanium dioxide thin films deposited by electric field-assisted CVD: Effect on antimicrobial and photocatalytic properties
Piccirillo Clara;
2015
Abstract
Thin films of anatase titanium dioxide are deposited on fluorine-doped tin oxide (FTO) glass substrates utilizing the electric field-assisted aerosol (EA)CVD reaction of titanium isopropoxide in toluene at 450°C. The as-deposited films are characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (RS), and UV-vis spectroscopy. The photoactivity and antibacterial activity of the films are also assessed. The characterization analysis reveals that the use of an electric field affects the film microstructure, its preferential orientation, and the functional properties. XRD of the anatase films reveals that the application of electric fields causes a change in the preferential orientation of the films from (101) to (004) or (211) planes, depending on the strength of the applied field during the deposition.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.