Smallholder farmers struggle to achieve food security in many countries of sub-Saharan Africa (SSA). It is urgently required to find appropriate practices for enhancing crop production while avoiding large increases in greenhouse gas (GHG) emissions in SSA. This review aims to identify common smallholder farming practices for enhancing crop production, to assess how these affect GHG emissions and to identify strategies that not only enhance crop production but also mitigate GHG emissions in SSA. To increase crop production and ensure food security, smallholder farmers usually expand agricultural land, develop water harvesting and irrigation techniques and increase cropping intensity and fertilizer use. These practices may result in changing carbon stocks and GHG emissions, potentially creating trade-offs between food security and GHG mitigation. Agricultural land expansion at the expense of forests is the most dominant source of GHG emissions in SSA. While water harvesting and irrigation can increase soil organic carbon, they can trigger GHG emissions. Increasing cropping intensity can enhance the decomposition of soil organic matter, thus releasing carbon dioxide. Increasing nitrogen fertilizer use can enhance soil organic carbon, but also leads to increasing nitrous oxide emissions. An integrated land, water and nutrient management strategy is necessary to enhance crop production and mitigate GHG emissions. Among the most relevant strategies found, agroforesty practices in degraded and marginal lands could replace expanding agricultural croplands. In addition, water management, via adequate rainwater harvesting and irrigation techniques, together with appropriate nutrient management should be considered. Therefore, a land-water-nutrient nexus (LWNN) approach will enable an integrated and sustainable solution to increasing crop production and mitigating GHG emissions. Various technical, economic and policy barriers hinder implementing the LWNN approach on the ground, but these may be overcome through developing appropriate technologies, disseminating them through farmer to farmer approaches and developing specific policies to address smallholder land tenure issues and motivate long-term investment.

Challenges and opportunities for enhancing food security and greenhouse gas mitigation in smallholder farming in sub-Saharan Africa. A review.

Elisa Grieco;
2021

Abstract

Smallholder farmers struggle to achieve food security in many countries of sub-Saharan Africa (SSA). It is urgently required to find appropriate practices for enhancing crop production while avoiding large increases in greenhouse gas (GHG) emissions in SSA. This review aims to identify common smallholder farming practices for enhancing crop production, to assess how these affect GHG emissions and to identify strategies that not only enhance crop production but also mitigate GHG emissions in SSA. To increase crop production and ensure food security, smallholder farmers usually expand agricultural land, develop water harvesting and irrigation techniques and increase cropping intensity and fertilizer use. These practices may result in changing carbon stocks and GHG emissions, potentially creating trade-offs between food security and GHG mitigation. Agricultural land expansion at the expense of forests is the most dominant source of GHG emissions in SSA. While water harvesting and irrigation can increase soil organic carbon, they can trigger GHG emissions. Increasing cropping intensity can enhance the decomposition of soil organic matter, thus releasing carbon dioxide. Increasing nitrogen fertilizer use can enhance soil organic carbon, but also leads to increasing nitrous oxide emissions. An integrated land, water and nutrient management strategy is necessary to enhance crop production and mitigate GHG emissions. Among the most relevant strategies found, agroforesty practices in degraded and marginal lands could replace expanding agricultural croplands. In addition, water management, via adequate rainwater harvesting and irrigation techniques, together with appropriate nutrient management should be considered. Therefore, a land-water-nutrient nexus (LWNN) approach will enable an integrated and sustainable solution to increasing crop production and mitigating GHG emissions. Various technical, economic and policy barriers hinder implementing the LWNN approach on the ground, but these may be overcome through developing appropriate technologies, disseminating them through farmer to farmer approaches and developing specific policies to address smallholder land tenure issues and motivate long-term investment.
2021
Istituto per la BioEconomia - IBE
Sub-Sharan Africa
Smallholder farming
File in questo prodotto:
File Dimensione Formato  
s12571-021-01149-9.pdf

solo utenti autorizzati

Descrizione: Challenges and opportunities for enhancing food security and greenhouse gas mitigation in smallholder farming in sub-Saharan Africa. A review
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/422085
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact