A fundamental step towards achieving an "on demand" single photon source would be the possibility of electrical pumping for a single QD and thus the integration of such a device in an opto-electronic circuit. In this work we describe the fabrication process and preliminary results of a Light Emitting Diode (LED) to be integrated with a PhC nanocavity at telecom wavelength. We demonstrate the possibility of an effective electric pumping of the QDs embedded into the membrane by contacting the n-doped and p-doped layers of the thin membrane, which allows the fabrication of a PhC nanocavity on it. (C) 2007 Elsevier B.V. All rights reserved.
Towards a LED based on a photonic crystal nanocavity for single photon sources at telecom wavelength
A Gerardino;A Fiore
2008
Abstract
A fundamental step towards achieving an "on demand" single photon source would be the possibility of electrical pumping for a single QD and thus the integration of such a device in an opto-electronic circuit. In this work we describe the fabrication process and preliminary results of a Light Emitting Diode (LED) to be integrated with a PhC nanocavity at telecom wavelength. We demonstrate the possibility of an effective electric pumping of the QDs embedded into the membrane by contacting the n-doped and p-doped layers of the thin membrane, which allows the fabrication of a PhC nanocavity on it. (C) 2007 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.