Owing to their nano-sized porous structure, CaCO3 nanocrystals (CaCO3NCs) hold the promise to be utilized as desired materials for encapsulating molecules which demonstrate wide promise in drug delivery. We evaluate the possibility to encapsulate and release NVP-BEZ235, a novel and potent dual PI3K/mTOR inhibitor that is currently in phase I/II clinical trials for advanced solid tumors, from the CaCO3NCs. Its chemical nature shows some intrinsic limitations which induce to administer high doses leading to toxicity; to overcome these problems, here we proposed a strategy to enhance its intracellular penetration and its biological activity. Pristine CaCO3 NCs biocompatibility, cell interactions and internalization in in vitro experiments on T-cell lymphoma line, were studied. Confocal microscopy was used to monitor NCs-cell interactions and cellular uptake. We have further investigated the interaction nature and release mechanism of drug loaded/released within/from the NCs using an alternative approach based on liquid chromatography coupled to mass spectrometry. Our approach provides a good loading efficiency, therefore this drug delivery system was validated for biological activity in T-cell lymphoma: the anti-proliferative test and western blot results are very interesting because the proposed nano-formulation has an efficiency higher than free drug at the same nominal concentration.

Cell-Penetrating CaCO3 Nanocrystals for Improved Transport of NVP-BEZ235 across Membrane Barrier in T-Cell Lymphoma

Vergaro Viviana;Ciccarella Giuseppe
2018

Abstract

Owing to their nano-sized porous structure, CaCO3 nanocrystals (CaCO3NCs) hold the promise to be utilized as desired materials for encapsulating molecules which demonstrate wide promise in drug delivery. We evaluate the possibility to encapsulate and release NVP-BEZ235, a novel and potent dual PI3K/mTOR inhibitor that is currently in phase I/II clinical trials for advanced solid tumors, from the CaCO3NCs. Its chemical nature shows some intrinsic limitations which induce to administer high doses leading to toxicity; to overcome these problems, here we proposed a strategy to enhance its intracellular penetration and its biological activity. Pristine CaCO3 NCs biocompatibility, cell interactions and internalization in in vitro experiments on T-cell lymphoma line, were studied. Confocal microscopy was used to monitor NCs-cell interactions and cellular uptake. We have further investigated the interaction nature and release mechanism of drug loaded/released within/from the NCs using an alternative approach based on liquid chromatography coupled to mass spectrometry. Our approach provides a good loading efficiency, therefore this drug delivery system was validated for biological activity in T-cell lymphoma: the anti-proliferative test and western blot results are very interesting because the proposed nano-formulation has an efficiency higher than free drug at the same nominal concentration.
2018
CaCO3 nanocrystals
NVP-BEZ235
mass spectrometry
T-cell lymphoma
drug delivery
nanomedicine
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/422165
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact