Copper(II) binding to prion peptides does not prevent Cu redox cycling and formation of reactive oxygen species (ROS) in the presence of reducing agents. The toxic effects of these species are exacerbated in the presence of catecholamines, indicating that dysfunction of catecholamine vesicular sequestration or recovery after synaptic release is a dangerous amplifier of Cu induced oxidative stress. Cu bound to prion peptides including the high affinity site involving histidines adjacent to the octarepeats exhibits marked catalytic activity toward dopamine and 4-methylcatechol. The resulting quinone oxidation products undergo parallel oligomerization and endogenous peptide modification yielding catechol adducts at the histidine binding ligands. These modifications add to the more common oxidation of Met and His residues produced by ROS. Derivatization of Cu-prion peptides is much faster than that undergone by Cu-?-amyloid and Cu-?-synuclein complexes in the same conditions.

Prion Peptides Are Extremely Sensitive to Copper Induced Oxidative Stress

Di Natale G;Rizzarelli E;
2017

Abstract

Copper(II) binding to prion peptides does not prevent Cu redox cycling and formation of reactive oxygen species (ROS) in the presence of reducing agents. The toxic effects of these species are exacerbated in the presence of catecholamines, indicating that dysfunction of catecholamine vesicular sequestration or recovery after synaptic release is a dangerous amplifier of Cu induced oxidative stress. Cu bound to prion peptides including the high affinity site involving histidines adjacent to the octarepeats exhibits marked catalytic activity toward dopamine and 4-methylcatechol. The resulting quinone oxidation products undergo parallel oligomerization and endogenous peptide modification yielding catechol adducts at the histidine binding ligands. These modifications add to the more common oxidation of Met and His residues produced by ROS. Derivatization of Cu-prion peptides is much faster than that undergone by Cu-?-amyloid and Cu-?-synuclein complexes in the same conditions.
2017
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli
Istituto di Cristallografia - IC
Redox reactions
Hydrocarbons
Modification
Peptides and proteins
Oxidation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/422221
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact