Highly ordered Mesoporous Silica Nanoparticles (MSNs), belonging to MCM-41 family (100 nm wide), with a mean pore size of about 4 nm, are used as carrier for the hydrophobic photosensitizer (PS) Chlorophyll a (Chl) in water medium. In future perspective to study the proposed system in Photodynamic Therapy (PDT) and/or in antimicrobial-PDT (aPDT), advances in Chl studies in aqueous solution, mimicking the biological environment, were presented during this work with the main aim to obtain a supramolecular assembly able to host photoactive Chl in water medium. As synthetized MSNs and amino grafted MSNs (MSNs-NH2) were studied and carefully characterized, with and without Chl, using TGA, SEM, TEM, SAXS, Nitrogen physisorption isotherms, Z-potential investigation, FTIR-ATR and UV-vis absorption/fluorescence analyses, including also the Chl fluorescence lifetime evaluation. To drive Chl inside the pores, the drug loading method by using the adsorption process, was adopted. The NH2 moieties exerted a key role to host Chl inside the MSNs-NH2 pores, allowing to obtain Chl as monomer. Electrostatic interactions through positively charged amino groups were evidenced, along with the hydrogen bond presence involving the pigment hydrated form and the MSNs-NH2. Two Chl populations, i.e. ascribed to the monomeric and dimeric one, were revealed by (1)Chl* lifetime measurements and steady state fluorescence emission. The presence of photoactive Chl molecules was demonstrated with the qualitative evaluation of O-1(2) by means of chemical probes.

A comprehensive investigation of amino grafted mesoporous silica nanoparticles supramolecular assemblies to host photoactive chlorophyll a in aqueous solution

Gubitosa Jennifer;Fini Paola;Fanelli Fiorenza;
2019

Abstract

Highly ordered Mesoporous Silica Nanoparticles (MSNs), belonging to MCM-41 family (100 nm wide), with a mean pore size of about 4 nm, are used as carrier for the hydrophobic photosensitizer (PS) Chlorophyll a (Chl) in water medium. In future perspective to study the proposed system in Photodynamic Therapy (PDT) and/or in antimicrobial-PDT (aPDT), advances in Chl studies in aqueous solution, mimicking the biological environment, were presented during this work with the main aim to obtain a supramolecular assembly able to host photoactive Chl in water medium. As synthetized MSNs and amino grafted MSNs (MSNs-NH2) were studied and carefully characterized, with and without Chl, using TGA, SEM, TEM, SAXS, Nitrogen physisorption isotherms, Z-potential investigation, FTIR-ATR and UV-vis absorption/fluorescence analyses, including also the Chl fluorescence lifetime evaluation. To drive Chl inside the pores, the drug loading method by using the adsorption process, was adopted. The NH2 moieties exerted a key role to host Chl inside the MSNs-NH2 pores, allowing to obtain Chl as monomer. Electrostatic interactions through positively charged amino groups were evidenced, along with the hydrogen bond presence involving the pigment hydrated form and the MSNs-NH2. Two Chl populations, i.e. ascribed to the monomeric and dimeric one, were revealed by (1)Chl* lifetime measurements and steady state fluorescence emission. The presence of photoactive Chl molecules was demonstrated with the qualitative evaluation of O-1(2) by means of chemical probes.
2019
Istituto per i Processi Chimico-Fisici - IPCF
Chlorophyll a
Mesoporous silica nanoparticles
ROS
Photochemistry
Singlet oxygen
File in questo prodotto:
File Dimensione Formato  
prod_440307-doc_158006.pdf

solo utenti autorizzati

Descrizione: A comprehensive investigation of amino grafted mesoporous silica nanoparticles supramolecular assemblies
Tipologia: Versione Editoriale (PDF)
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/422350
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact