Anthocyanins are the main polyphenolic dyes found in young red wines, which are transformed into more stable structures such as pyranoanthocyanins, during wine ageing and maturation. While anthocyanins practically lose their red color between pH 1 and 5, as a result of the formation of colorless hemiketals, pyranoanthocyanins practically do not change their color intensity. For that they constitute a photosensitizer family with great potential for bio-inspired dye-sensitized solar cells (DSSCs). In this work, a series of pyranoanthocyanin derivatives were designed, synthesized and applied for the first time as dye sensitizers in DSSCs. A relation was established between dye structure and cell efficiency. Specifically, the influence of different linker units, carboxyl and catechol, was studied in terms of their influence in the various parameters related to DSSC efficiency. The presence of the catechol unit was shown to be essential for efficient electron injection of the dye into the TiO2 semiconductor, since carboxylic units showed a deleterious effect in electron injection due to their electron withdrawing character. An overall efficiency of 1.15% was obtained for the best performing compound, 10-catecholpyrano-3',4,5,7-tetrahydroxyflavylium, with no further optimization.

Catechol versus carboxyl linkage impact on DSSC performance of synthetic pyranoflavylium salts

Calogero;Giuseppe;
2019

Abstract

Anthocyanins are the main polyphenolic dyes found in young red wines, which are transformed into more stable structures such as pyranoanthocyanins, during wine ageing and maturation. While anthocyanins practically lose their red color between pH 1 and 5, as a result of the formation of colorless hemiketals, pyranoanthocyanins practically do not change their color intensity. For that they constitute a photosensitizer family with great potential for bio-inspired dye-sensitized solar cells (DSSCs). In this work, a series of pyranoanthocyanin derivatives were designed, synthesized and applied for the first time as dye sensitizers in DSSCs. A relation was established between dye structure and cell efficiency. Specifically, the influence of different linker units, carboxyl and catechol, was studied in terms of their influence in the various parameters related to DSSC efficiency. The presence of the catechol unit was shown to be essential for efficient electron injection of the dye into the TiO2 semiconductor, since carboxylic units showed a deleterious effect in electron injection due to their electron withdrawing character. An overall efficiency of 1.15% was obtained for the best performing compound, 10-catecholpyrano-3',4,5,7-tetrahydroxyflavylium, with no further optimization.
2019
Istituto per i Processi Chimico-Fisici - IPCF
STRUCTURAL-CHARACTERIZATION
NATURAL SENSITIZERS; ELECTRON INJECTION; SOLAR-CELLS; DYE; PIGMENTS; ANTHOCYANINS; CONVERSION; BETALAINS; LIGHT
File in questo prodotto:
File Dimensione Formato  
prod_447980-doc_161418.pdf

solo utenti autorizzati

Descrizione: Catechol versus carboxyl linkage impact on DSSC performance of synthetic pyranoflavylium salts
Tipologia: Versione Editoriale (PDF)
Dimensione 916.46 kB
Formato Adobe PDF
916.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/422422
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact