Optical frequency combs currently represent enabling components in a wide number of fast-growing research fields, from frequency metrology to precision spectroscopy, from synchronization of telecommunication systems to environmental and biomedical spectrometry. As recently demonstrated, quadratic nonlinear media are a promising platform for optical frequency combs generation, through the onset of an internally pumped optical parametric oscillator in cavity enhanced second-harmonic generation systems. We present here a proposal for quadratic frequency comb generation in AlGaAs waveguide resonators. Based on the crystal symmetry properties of the AlGaAs material, quasi-phase matching can be realized in curved geometries (directional quasi-phase matching), thus ensuring efficient optical frequency conversion. We propose a novel design of AlGaAs waveguide resonators with strongly reduced total losses, compatible with long-path, high-quality resonators. By means of a numerical study, we predict efficient frequency comb generation with threshold powers in the microwatt range, paving the way for the full integration of frequency comb synthesizers in photonic circuits.

Directional quasi-phase matching AlGaAs waveguide microresonators for efficient generation of quadratic frequency combs

Parisi Maria;Ricciardi Iolanda;Mosca Simona;Wabnitz Stefan;De Rosa Maurizio
2017

Abstract

Optical frequency combs currently represent enabling components in a wide number of fast-growing research fields, from frequency metrology to precision spectroscopy, from synchronization of telecommunication systems to environmental and biomedical spectrometry. As recently demonstrated, quadratic nonlinear media are a promising platform for optical frequency combs generation, through the onset of an internally pumped optical parametric oscillator in cavity enhanced second-harmonic generation systems. We present here a proposal for quadratic frequency comb generation in AlGaAs waveguide resonators. Based on the crystal symmetry properties of the AlGaAs material, quasi-phase matching can be realized in curved geometries (directional quasi-phase matching), thus ensuring efficient optical frequency conversion. We propose a novel design of AlGaAs waveguide resonators with strongly reduced total losses, compatible with long-path, high-quality resonators. By means of a numerical study, we predict efficient frequency comb generation with threshold powers in the microwatt range, paving the way for the full integration of frequency comb synthesizers in photonic circuits.
2017
Microresonators
AlGaAs
Optical frequency combs
Nonlinear optics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/422473
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact