Cellulose acetate (CA) is an attractive membrane polymer for CO2 capture market. However, its low CO2 permeability hampers its application as part of a membrane for most relevant types of CO2 containing feeds. This work investigates the enhancement of CA separation performance by incorporating ionic liquid-like pendants (1-methylimidazol, 1-methylpyrrolidine, and 2-hydroxyethyldimethylamine (HEDMA) on the CA backbone. These CA-based polyelectrolytes (PEs), synthesised by covalent grafting of cationic pendants with anion metathesis, were characterised by NMR, FTIR, DSC/TGA, and processed into thin-film composite membranes. The membrane performance in CO2/N2 mixed-gas permeation experiments shows a decrease in CO2 and N2 permeability and an initial decrease and then gradual increase in CO2/N2 selectivity with increasing HEDMA content. The amount of HEDMA attached to the CA backbone determines overall separation process in bifunctional PEs. This indicates that the hydroxy-substituted cationic pendants alter interactions between PEs network and permeating CO2 molecules, suggesting possibilities for further improvements.

Influence of ionic liquid-like cationic pendants composition in cellulose based polyelectrolytes on membrane-based CO2 separation

Jansen Johannes C;
2021

Abstract

Cellulose acetate (CA) is an attractive membrane polymer for CO2 capture market. However, its low CO2 permeability hampers its application as part of a membrane for most relevant types of CO2 containing feeds. This work investigates the enhancement of CA separation performance by incorporating ionic liquid-like pendants (1-methylimidazol, 1-methylpyrrolidine, and 2-hydroxyethyldimethylamine (HEDMA) on the CA backbone. These CA-based polyelectrolytes (PEs), synthesised by covalent grafting of cationic pendants with anion metathesis, were characterised by NMR, FTIR, DSC/TGA, and processed into thin-film composite membranes. The membrane performance in CO2/N2 mixed-gas permeation experiments shows a decrease in CO2 and N2 permeability and an initial decrease and then gradual increase in CO2/N2 selectivity with increasing HEDMA content. The amount of HEDMA attached to the CA backbone determines overall separation process in bifunctional PEs. This indicates that the hydroxy-substituted cationic pendants alter interactions between PEs network and permeating CO2 molecules, suggesting possibilities for further improvements.
2021
Istituto per la Tecnologia delle Membrane - ITM
Carbon capture
Cellu
CO separation 2
Polyelectrolytes
Thin-film composites
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/422538
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 14
social impact