GeTe is an end-point of the GeTe-Sb2Te3 quasibinary alloys often referred to as phase-change memory materials. The polycrystalline nature of the crystalline films used in devices and the concomitant presence of grain boundaries complicate detailed structural studies of the local structure. Recent progress in the epitaxial growth of phase-change materials offers unique possibilities for precise structural investigations. In this work, we report on results of x-ray absorption near-edge structure (XANES) studies of GeTe and Ge2Sb2Te5 epitaxial films grown on Si and InAs substrates with (100) and (111) orientations. The results show a strong dependence of the local structure on the substrate material and especially orientation and are discussed in conjunction with polycrystalline samples and ab-initio XANES simulations.
Local structure of epitaxial GeTe and Ge2Sb2Te5 films grown on InAs and Si substrates with (100) and (111) orientations: An x-ray absorption near-edge structure study
Calarco R;
2015
Abstract
GeTe is an end-point of the GeTe-Sb2Te3 quasibinary alloys often referred to as phase-change memory materials. The polycrystalline nature of the crystalline films used in devices and the concomitant presence of grain boundaries complicate detailed structural studies of the local structure. Recent progress in the epitaxial growth of phase-change materials offers unique possibilities for precise structural investigations. In this work, we report on results of x-ray absorption near-edge structure (XANES) studies of GeTe and Ge2Sb2Te5 epitaxial films grown on Si and InAs substrates with (100) and (111) orientations. The results show a strong dependence of the local structure on the substrate material and especially orientation and are discussed in conjunction with polycrystalline samples and ab-initio XANES simulations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.