Hydrodynamic forces are an important input value for the design, navigation and station keeping of underwater Remotely Operated Vehicles (ROVs). The experiment investigated the forces imparted by currents (with representative real world turbulence) and waves on a commercially available ROV, namely the BlueROV2 (Blue Robotics, Torrance, USA). Three different distances of a simplified cylindrical obstacle (shading effects) were investigated in addition to the free stream cases. Eight tethers held the ROV in the middle of the 2 m water depth to minimise the influence of the support structure without completely restricting the degrees of freedom (DoF). Each tether was equipped with a load cell and small motions and rotations were documented with an underwater video motion capture system. The paper describes the experimental set-up, input values (current speed and wave definitions) and initial processing of the data. In addition to the raw data, a processed dataset is provided, which includes forces in all three main coordinate directions for each mounting point synchronised with the 6DoF results and the free surface elevations. The provided dataset can be used as a validation experiment as well as for testing and development of an algorithm for position control of comparable ROVs.

Hydrodynamic Loads on a Restrained ROV under Wave and Current

Simona Aracri
Methodology
;
2020

Abstract

Hydrodynamic forces are an important input value for the design, navigation and station keeping of underwater Remotely Operated Vehicles (ROVs). The experiment investigated the forces imparted by currents (with representative real world turbulence) and waves on a commercially available ROV, namely the BlueROV2 (Blue Robotics, Torrance, USA). Three different distances of a simplified cylindrical obstacle (shading effects) were investigated in addition to the free stream cases. Eight tethers held the ROV in the middle of the 2 m water depth to minimise the influence of the support structure without completely restricting the degrees of freedom (DoF). Each tether was equipped with a load cell and small motions and rotations were documented with an underwater video motion capture system. The paper describes the experimental set-up, input values (current speed and wave definitions) and initial processing of the data. In addition to the raw data, a processed dataset is provided, which includes forces in all three main coordinate directions for each mounting point synchronised with the 6DoF results and the free surface elevations. The provided dataset can be used as a validation experiment as well as for testing and development of an algorithm for position control of comparable ROVs.
2020
Istituto di iNgegneria del Mare - INM (ex INSEAN) - Sede Secondaria Genova
wave tank
experimental investigation
fluid
wave gauges
structure interaction
motion capturing
rov
hydrodynamic forces
File in questo prodotto:
File Dimensione Formato  
gabl_2020_data.pdf

accesso aperto

Descrizione: Manuscript
Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 3.39 MB
Formato Adobe PDF
3.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/422666
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? ND
social impact