A series of N-(5-methyl-isoxazol-3-yl/1,3,4-thiadiazol-2-yl)-4-(3-substitutedphenylureido) benzenesulfonamide derivatives has been designed, synthesized and screened for their in vitro human carbonic anhydrase (hCA; EC 4.2.1.1) inhibition potential. These newly synthesized sulfonamide compounds were assessed against isoforms hCA I, II, VII and XII, with acetazolamide (AAZ) as a reference compound. The majority of these compounds were found quite weak inhibitor against all tested isoforms. Compound 15 showed a modest inhibition potency against hCA I (K-i=73.7M) and hCA VII (K-i=85.8M). Compounds 19 and 25 exhibited hCA II inhibition with K-i values of 96.0M and 87.8M, respectively. The results of the present study suggest that, although the synthesized derivatives have weak inhibitory potential towards all investigated isoforms, some of them may serve as lead molecules for the further development of selective inhibitors incorporating secondary sulfonamide functionalities, a class of inhibitors for which the inhibition mechanism is poorly understood.

Design, synthesis and biological evaluation of N-(5-methyl-isoxazol-3-yl/1,3,4-thiadiazol-2-yl)-4-(3-substitutedphenylureido) benzenesulfonamides as human carbonic anhydrase isoenzymes I, II, VII and XII inhibitors

Monti Simona Maria;Buonanno Martina;
2016

Abstract

A series of N-(5-methyl-isoxazol-3-yl/1,3,4-thiadiazol-2-yl)-4-(3-substitutedphenylureido) benzenesulfonamide derivatives has been designed, synthesized and screened for their in vitro human carbonic anhydrase (hCA; EC 4.2.1.1) inhibition potential. These newly synthesized sulfonamide compounds were assessed against isoforms hCA I, II, VII and XII, with acetazolamide (AAZ) as a reference compound. The majority of these compounds were found quite weak inhibitor against all tested isoforms. Compound 15 showed a modest inhibition potency against hCA I (K-i=73.7M) and hCA VII (K-i=85.8M). Compounds 19 and 25 exhibited hCA II inhibition with K-i values of 96.0M and 87.8M, respectively. The results of the present study suggest that, although the synthesized derivatives have weak inhibitory potential towards all investigated isoforms, some of them may serve as lead molecules for the further development of selective inhibitors incorporating secondary sulfonamide functionalities, a class of inhibitors for which the inhibition mechanism is poorly understood.
2016
Carbonic anhydrase
inhibitor
sulfonamide
synthesis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/423003
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact