We report the behavior of two Yb3+ doped ceramics (i.e. 10% at. and 20% at.) under quasi-continuous wave laser pumping. Two different behaviors are found depending on the density of Yb3+ in the excited level. Experimental results show that at low population inversion density, the maximum output power and the efficiency are almost independent on the doping concentration. In particular, an output power as high as 8.9 W with a corresponding slope efficiency of 52% with respect to the injected pump power was reached with the 20% at. sample. Conversely, at high population inversion densities, the 20% doped sample shows a sudden decrease of the laser output for increasing pump power, due to the onset of a nonlinear loss mechanism. Finally, we report a comparison of the experimental results with numerical simulations for the evaluation of the inversion density and of the temperature distribution.

Effects of the excitation density on the laser output of two differently doped Yb:YAG ceramics

Angela Pirri;Guido Toci;Daniele Alderighi;Matteo Vannini
2010

Abstract

We report the behavior of two Yb3+ doped ceramics (i.e. 10% at. and 20% at.) under quasi-continuous wave laser pumping. Two different behaviors are found depending on the density of Yb3+ in the excited level. Experimental results show that at low population inversion density, the maximum output power and the efficiency are almost independent on the doping concentration. In particular, an output power as high as 8.9 W with a corresponding slope efficiency of 52% with respect to the injected pump power was reached with the 20% at. sample. Conversely, at high population inversion densities, the 20% doped sample shows a sudden decrease of the laser output for increasing pump power, due to the onset of a nonlinear loss mechanism. Finally, we report a comparison of the experimental results with numerical simulations for the evaluation of the inversion density and of the temperature distribution.
2010
Istituto di Fisica Applicata - IFAC
Lasers and laser optics
Solid-state Lasers
Rare earth and transition metal solid-state lasers
Tunable lasers
Laser materials
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/42303
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? ND
social impact