In this paper, the asymptotic behaviour of the numerical solution to the Volterra integralequations is studied. In particular, a technique based on an appropriate splitting of the kernel isintroduced, which allows one to obtain vanishing asymptotic (transient) behaviour in the numericalsolution, consistently with the properties of the analytical solution, without having to operaterestrictions on the integration steplength

Analysis of the Transient Behaviour in the Numerical Solution of Volterra Integral Equations

Vecchio A
2021

Abstract

In this paper, the asymptotic behaviour of the numerical solution to the Volterra integralequations is studied. In particular, a technique based on an appropriate splitting of the kernel isintroduced, which allows one to obtain vanishing asymptotic (transient) behaviour in the numericalsolution, consistently with the properties of the analytical solution, without having to operaterestrictions on the integration steplength
2021
Istituto Applicazioni del Calcolo ''Mauro Picone''
-
Volterra integral equations
asymptotic-preserving
numerical stability
File in questo prodotto:
File Dimensione Formato  
axioms-10-00023-v2.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 795.26 kB
Formato Adobe PDF
795.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/423089
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact