The development of the first generation of commercial quantum computers is based on superconductive qubits and trapped ions respectively. Other technologies such as semiconductor quantum dots, neutral ions and photons could in principle provide an alternative to achieve comparable results in the medium term. It is relevant to evaluate if one or more of them is potentially more effective to address scalability to millions of qubits in the long term, in view of creating a universal quantum computer. We review an all-electrical silicon spin qubit, that is the double quantum dot hybrid qubit, a quantum technology which relies on both solid theoretical grounding on one side, and massive fabrication technology of nanometric scale devices by the existing silicon supply chain on the other. (C) 2020 Elsevier B.V. All rights reserved.
Is all-electrical silicon quantum computing feasible in the long term?
Ferraro Elena;Prati Enrico
2020
Abstract
The development of the first generation of commercial quantum computers is based on superconductive qubits and trapped ions respectively. Other technologies such as semiconductor quantum dots, neutral ions and photons could in principle provide an alternative to achieve comparable results in the medium term. It is relevant to evaluate if one or more of them is potentially more effective to address scalability to millions of qubits in the long term, in view of creating a universal quantum computer. We review an all-electrical silicon spin qubit, that is the double quantum dot hybrid qubit, a quantum technology which relies on both solid theoretical grounding on one side, and massive fabrication technology of nanometric scale devices by the existing silicon supply chain on the other. (C) 2020 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.