We demonstrate that conductometric gas sensing at room temperature with SnO2 nanowires (NWs) is enhanced by visible and supraband gap UV irradiation when and only when the metal oxide NWs are decorated with Ag nanoparticles (NPs) (diameter < 20 nm); no enhancement is observed for the bare SnO2 case. We combine the spectroscopic techniques with conductometric gas sensing to study the wavelength dependency of the sensors' response, showing a strict correlation between the Ag-loaded SnO2 optical absorption and its gas response as a function of irradiation wavelength. Our results lead to the hypothesis that the enhanced gas response under UV vis light is the effect of plasmonic hot electrons populating the Ag NPs surface. Finally, we discuss the chemiresistive properties of Ag-loaded SnO2 sensor in parallel with the theory of plasmon-driven catalysis, to propose an interpretative framework that is coherent with the established paradigma of these two separated fields of study.

Tin Oxide Nanowires Decorated with Ag Nanoparticles for Visible Light-Enhanced Hydrogen Sensing at Room Temperature: Bridging Conductometric Gas Sensing and Plasmon-Driven Catalysis

Baratto Camilla;Ferroni Matteo;Ponzoni Andrea;
2018

Abstract

We demonstrate that conductometric gas sensing at room temperature with SnO2 nanowires (NWs) is enhanced by visible and supraband gap UV irradiation when and only when the metal oxide NWs are decorated with Ag nanoparticles (NPs) (diameter < 20 nm); no enhancement is observed for the bare SnO2 case. We combine the spectroscopic techniques with conductometric gas sensing to study the wavelength dependency of the sensors' response, showing a strict correlation between the Ag-loaded SnO2 optical absorption and its gas response as a function of irradiation wavelength. Our results lead to the hypothesis that the enhanced gas response under UV vis light is the effect of plasmonic hot electrons populating the Ag NPs surface. Finally, we discuss the chemiresistive properties of Ag-loaded SnO2 sensor in parallel with the theory of plasmon-driven catalysis, to propose an interpretative framework that is coherent with the established paradigma of these two separated fields of study.
2018
Istituto per la Microelettronica e Microsistemi - IMM
Istituto Nazionale di Ottica - INO
sensor
nanowires
plasmonic
tin oxide
File in questo prodotto:
File Dimensione Formato  
prod_447590-doc_161305.pdf

solo utenti autorizzati

Descrizione: Tin Oxide Nanowires Decorated with Ag Nanoparticles for Visible Light-Enhanced Hydrogen Sensing
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.35 MB
Formato Adobe PDF
3.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/423213
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 27
social impact