The recent developments of microgravity experiments with ultracold atoms have produced a relevant boost in the study of shell-shaped ellipsoidal Bose-Einstein condensates. For realistic bubble-trap parameters, here we calculate the critical temperature of Bose-Einstein condensation, which, if compared to the one of the bare harmonic trap with the same frequencies, shows a strong reduction. We simulate the zero-temperature density distribution with the Gross-Pitaevskii equation, and we study the free expansion of the hollow condensate. While part of the atoms expands in the outward direction, the condensate self-interferes inside the bubble trap, filling the hole in experimentally observable times. For a mesoscopic number of particles in a strongly interacting regime, for which more refined approaches are needed, we employ quantum Monte Carlo simulations, proving that the nontrivial topology of a thin shell allows superfluidity. Our work constitutes a reliable benchmark for the forthcoming scientific investigations with bubble traps.

Quantum Bubbles in Microgravity

Salasnich L
2020

Abstract

The recent developments of microgravity experiments with ultracold atoms have produced a relevant boost in the study of shell-shaped ellipsoidal Bose-Einstein condensates. For realistic bubble-trap parameters, here we calculate the critical temperature of Bose-Einstein condensation, which, if compared to the one of the bare harmonic trap with the same frequencies, shows a strong reduction. We simulate the zero-temperature density distribution with the Gross-Pitaevskii equation, and we study the free expansion of the hollow condensate. While part of the atoms expands in the outward direction, the condensate self-interferes inside the bubble trap, filling the hole in experimentally observable times. For a mesoscopic number of particles in a strongly interacting regime, for which more refined approaches are needed, we employ quantum Monte Carlo simulations, proving that the nontrivial topology of a thin shell allows superfluidity. Our work constitutes a reliable benchmark for the forthcoming scientific investigations with bubble traps.
2020
Istituto Nazionale di Ottica - INO
Bose-Einstein condensation
File in questo prodotto:
File Dimensione Formato  
prod_449013-doc_178854.pdf

solo utenti autorizzati

Descrizione: Quantum Bubbles in Microgravity
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/423276
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 37
social impact