For a dilute two-dimensional Bose gas the universal equation of state has a logarithmic dependence on the s-wave scattering length. Here we derive nonuniversal corrections to this equation of state, taking account of finite-range effects of the interatomic potential. Our beyond-mean-field analytical results are obtained performing dimensional regularization of divergent zero-point quantum fluctuations within the finite-temperature formalism of functional integration. In particular, we find that in the grand canonical ensemble the pressure has a nonpolynomial dependence on the finite-range parameter and it is a highly nontrivial function of chemical potential and temperature.

Nonuniversal Equation of State of the Two-Dimensional Bose Gas

Salasnich L
2017

Abstract

For a dilute two-dimensional Bose gas the universal equation of state has a logarithmic dependence on the s-wave scattering length. Here we derive nonuniversal corrections to this equation of state, taking account of finite-range effects of the interatomic potential. Our beyond-mean-field analytical results are obtained performing dimensional regularization of divergent zero-point quantum fluctuations within the finite-temperature formalism of functional integration. In particular, we find that in the grand canonical ensemble the pressure has a nonpolynomial dependence on the finite-range parameter and it is a highly nontrivial function of chemical potential and temperature.
2017
2d bose gas
quantum fluctuations
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/423287
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact