Knowing an accurate passengers attendance estimation on each metro car contributes to the safely coordination and sorting the crowd-passenger in each metro station. In this work we propose a multi-head Convolutional Neural Network (CNN) architecture trained to infer an estimation of passenger attendance in a metro car. The proposed network architecture consists of two main parts: a convolutional backbone, which extracts features over the whole input image, and a multi-head layers able to estimate a density map, needed to predict the number of people within the crowd image. The network performance is first evaluated on publicly available crowd counting datasets, including the ShanghaiTech part_A, ShanghaiTech part_B and UCF_CC_50, and then trained and tested on our dataset acquired in subway cars in Italy. In both cases a comparison is made against the most relevant and latest state of the art crowd counting architectures, showing that our proposed MH-MetroNet architecture outperforms in terms of Mean Absolute Error (MAE) and Mean Square Error (MSE) and passenger-crowd people number prediction.

MH-MetroNet--A Multi-Head CNN for Passenger-Crowd Attendance Estimation

Mazzeo;Pier Luigi;Contino;Riccardo;Spagnolo;Paolo;Distante;Cosimo;Stella;Ettore;Nitti;Massimiliano;Vito
2020

Abstract

Knowing an accurate passengers attendance estimation on each metro car contributes to the safely coordination and sorting the crowd-passenger in each metro station. In this work we propose a multi-head Convolutional Neural Network (CNN) architecture trained to infer an estimation of passenger attendance in a metro car. The proposed network architecture consists of two main parts: a convolutional backbone, which extracts features over the whole input image, and a multi-head layers able to estimate a density map, needed to predict the number of people within the crowd image. The network performance is first evaluated on publicly available crowd counting datasets, including the ShanghaiTech part_A, ShanghaiTech part_B and UCF_CC_50, and then trained and tested on our dataset acquired in subway cars in Italy. In both cases a comparison is made against the most relevant and latest state of the art crowd counting architectures, showing that our proposed MH-MetroNet architecture outperforms in terms of Mean Absolute Error (MAE) and Mean Square Error (MSE) and passenger-crowd people number prediction.
2020
crowd counting
convolutional neural network
multi-head
smart cities
artificial intelligence
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/423310
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact