As a promising technique for multiphase catalytic reactions, the widespread applications of gas-liquid- solid microreactors are still limited by poor durability. Hence, in this work a novel catalytic membrane was synthesised for carrying out the hydrogenation reaction of a bio-oil model compounds. A PEEK-WC membrane was obtained by VIPS/ NIPS technique using a more sustainable solvent (Tamisolve® NxG), with subsequently surface solfanation and doped with Ru. The modified membrane was characterised with different techniques and subsequently tested for the model compounds hydrogenation under mild conditions, achieving 75% furfural conversion and 57.5% furfuryl alcohol selectivity at 85 oC and 18 bar, while only 33% vanillin was converted to vanillin alcohol. The TOF for furfural resulted comparable to that of previously tested catalysts in conventional reactors. The microreactor performed in a stable manner for about 90 h with less than 1% Ru leached out in solution, outperforming previously tested Ru-PES membrane.

Development of Ru-PEEK-WC catalytic membrane using a more sustainable solvent for stable hydrogenation reactions

A Figoli;F Russo;F Galiano;
2021

Abstract

As a promising technique for multiphase catalytic reactions, the widespread applications of gas-liquid- solid microreactors are still limited by poor durability. Hence, in this work a novel catalytic membrane was synthesised for carrying out the hydrogenation reaction of a bio-oil model compounds. A PEEK-WC membrane was obtained by VIPS/ NIPS technique using a more sustainable solvent (Tamisolve® NxG), with subsequently surface solfanation and doped with Ru. The modified membrane was characterised with different techniques and subsequently tested for the model compounds hydrogenation under mild conditions, achieving 75% furfural conversion and 57.5% furfuryl alcohol selectivity at 85 oC and 18 bar, while only 33% vanillin was converted to vanillin alcohol. The TOF for furfural resulted comparable to that of previously tested catalysts in conventional reactors. The microreactor performed in a stable manner for about 90 h with less than 1% Ru leached out in solution, outperforming previously tested Ru-PES membrane.
2021
Istituto per la Tecnologia delle Membrane - ITM
PEEK-WC
membrane reactor
hydrogenation
furfural
vanillin
microreactors
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/423449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact