Computer vision for biomedical imaging applications is fast developing and at once demanding field of computer science. In particular, computer vision technique provides excellent results for detection and segmentation problems in tomographic imaging. X-ray phase contrast Tomography (XPCT) is a noninvasive 3D imaging technique with high sensitivity for soft tissues. Despite a considerable progress in XPCT data acquisition and data processing methods, the problem in degradation of image quality due to artifacts remains a widespread and often critical issue for computer vision applications. One of the main problems originates from a sample alteration during a long tomographic scan. We proposed and tested Simultaneous Iterative Reconstruction algorithm with Total Variation regularization to reduce the number of projections in high resolution XPCT scans of ex-vivo mouse spinal cord. We have shown that the proposed algorithm allows tenfold reducing the number of projections and, therefore, the exposure time, with conservation of the important morphological information in 3D image with quality acceptable for computer graphics and computer vision applications. Our research paves a way for more effective implementation of advanced computer technologies in phase contrast tomographic research.

Simultaneous Iterative Reconstruction Method for High Resolution X-Ray Phase-Contrast Tomography

Bukreeva I;Fratini M;Cedola A
2020

Abstract

Computer vision for biomedical imaging applications is fast developing and at once demanding field of computer science. In particular, computer vision technique provides excellent results for detection and segmentation problems in tomographic imaging. X-ray phase contrast Tomography (XPCT) is a noninvasive 3D imaging technique with high sensitivity for soft tissues. Despite a considerable progress in XPCT data acquisition and data processing methods, the problem in degradation of image quality due to artifacts remains a widespread and often critical issue for computer vision applications. One of the main problems originates from a sample alteration during a long tomographic scan. We proposed and tested Simultaneous Iterative Reconstruction algorithm with Total Variation regularization to reduce the number of projections in high resolution XPCT scans of ex-vivo mouse spinal cord. We have shown that the proposed algorithm allows tenfold reducing the number of projections and, therefore, the exposure time, with conservation of the important morphological information in 3D image with quality acceptable for computer graphics and computer vision applications. Our research paves a way for more effective implementation of advanced computer technologies in phase contrast tomographic research.
2020
X-ray phase contrast micro tomography
spine
spinal cord
preclinical ex-vivo mouse model
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/423454
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact