Two-dimensional semiconductors are considered intriguing materials for photonic applications, thanks to their stunning optical properties and the possibility to manipulate them at the nanoscale. In this review, we focus on transition metal dichalcogenides and low-dimensional hybrid organic-inorganic perovskites, which possess the same characteristics related to planar confinement of their excitons: large binding energies, wide exciton extension, and high oscillator strength. We describe their optoelectronic properties and their capability to achieve strong coupling with light, with particular attention to polariton-polariton interactions. These aspects make them very attractive for polaritonic devices working at room temperature, in view of the realization of all-optical logic circuits in low-cost and easy-to-synthesize innovative materials.

Emerging 2D materials for room-temperature polaritonics

Ardizzone Vincenzo;De Marco Luisa;De Giorgi Milena;Dominici Lorenzo;Ballarini Dario;Sanvitto Daniele
2019

Abstract

Two-dimensional semiconductors are considered intriguing materials for photonic applications, thanks to their stunning optical properties and the possibility to manipulate them at the nanoscale. In this review, we focus on transition metal dichalcogenides and low-dimensional hybrid organic-inorganic perovskites, which possess the same characteristics related to planar confinement of their excitons: large binding energies, wide exciton extension, and high oscillator strength. We describe their optoelectronic properties and their capability to achieve strong coupling with light, with particular attention to polariton-polariton interactions. These aspects make them very attractive for polaritonic devices working at room temperature, in view of the realization of all-optical logic circuits in low-cost and easy-to-synthesize innovative materials.
2019
hybrid organic-inorganic perovskite
polaritons
strong light-matter coupling
transition metal dichalcogenides
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/423459
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? ND
social impact