Near Infrared (NIR) reflectography, coupled to visible (VIS) one, is a spectrophotometric imaging technique employed to probe both the inner and the outer layers of artworks. NIR reflectograms may partially contain information pertinent to the visible spectrum (due to the poor pigment transparency in NIR) and this decreases their comprehensibility. This work presents an innovative digital processing methodology for accentuating information contained in the infrared reflectograms. The proposed method consists of inducing minor changes in pixel intensity by suppressing VIS information content from NIR information content. The method creates such enhanced NIR reflectogram by extrapolating VIS reflectogram to a reflectogram recorded in NIR range and by subtracting it from the measured values in the near infrared spectral sub-band. As an extrapolator we suggest a feed forward artificial neural network (ANN). Significant results of improved visualization are exemplified on reflectograms acquired with a VIS-NIR (400, 2250) nm scanning device on real paintings such as Madonna dei Fusi attributed to Leonardo da Vinci. Parameters of the method, artificial neural network and separability of used pigments are discussed. (C) 2016 Elsevier Inc. All rights reserved.

Improvement of the visibility of concealed features in artwork NIR reflectograms by information separation

Striova Jana;Fontana Raffaella;
2017

Abstract

Near Infrared (NIR) reflectography, coupled to visible (VIS) one, is a spectrophotometric imaging technique employed to probe both the inner and the outer layers of artworks. NIR reflectograms may partially contain information pertinent to the visible spectrum (due to the poor pigment transparency in NIR) and this decreases their comprehensibility. This work presents an innovative digital processing methodology for accentuating information contained in the infrared reflectograms. The proposed method consists of inducing minor changes in pixel intensity by suppressing VIS information content from NIR information content. The method creates such enhanced NIR reflectogram by extrapolating VIS reflectogram to a reflectogram recorded in NIR range and by subtracting it from the measured values in the near infrared spectral sub-band. As an extrapolator we suggest a feed forward artificial neural network (ANN). Significant results of improved visualization are exemplified on reflectograms acquired with a VIS-NIR (400, 2250) nm scanning device on real paintings such as Madonna dei Fusi attributed to Leonardo da Vinci. Parameters of the method, artificial neural network and separability of used pigments are discussed. (C) 2016 Elsevier Inc. All rights reserved.
2017
Signal separation
Painted layer enhancement
Separability limitations
Artwork analysis
Infrared reflectography
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/423583
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact