Since the behaviour of proteins and biological molecules is tightly related to cell's environment, more and more microscopy techniques are moving from in vitro to in living cells experiments. Looking at both diffusion and active transportation processes inside a cell requires three-dimensional localization over a few microns range, high SNR images and high temporal resolution. Since protein dynamics inside a cell involve all three dimensions, we developed an automated routine for 3D tracking of single fluorescent molecules inside living cells with nanometer accuracy, by exploiting the properties of the point-spread-function of out-of-focus Quantum Dots bound to the protein of interest.
An automated tool for 3d tracking of single molecules in living cells
Gardini L;Pavone F S
2015
Abstract
Since the behaviour of proteins and biological molecules is tightly related to cell's environment, more and more microscopy techniques are moving from in vitro to in living cells experiments. Looking at both diffusion and active transportation processes inside a cell requires three-dimensional localization over a few microns range, high SNR images and high temporal resolution. Since protein dynamics inside a cell involve all three dimensions, we developed an automated routine for 3D tracking of single fluorescent molecules inside living cells with nanometer accuracy, by exploiting the properties of the point-spread-function of out-of-focus Quantum Dots bound to the protein of interest.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


